Monthly Archives: September 2015

MIAP: Manifold Interface Amplitude Panning

MIAP is a suite of externals for Max which provides abstract graphical control over audio spatialization in multi-channel loudspeaker systems.  It is based off the work of Steve Ellison during the 80’s, a novel amplitude panning algorithm using barycentric coordinates to derive equal power speaker gains among collections of triplets of loudspeakers.  It is currently implemented as a function of Meyer Sound’s D-Mitri matrix mixing engine, where it is used heavily in sound design for theatre and large scale-spectactles.  Not only can it place sounds at a particular point in space, but paths can be created, looped, and edited to make sound move around the space.

It’s not the easiest software to get a handle on, but it is an incredibly powerful tool for spatializing audio in any possible loudspeaker configuration.

 

Assignment 3 – Convolve it

Transform an audio signal by convolving it with four different Impulse Response recordings.  You should make at least two of your IR recordings by using portable audio recorders to record the reverberations of a “pop” in two different acoustic spaces. Try to find unique acoustic spaces that will create interesting reverberations.  The other two IR recordings can be more experimental. For example, one can got interesting results by treating musical sounds as if they were IR recordings.

To deliver your work present:

• The original signal
• The original signal convolved through 4 different IR recordings
• The 4 IR recordings, and a brief description of how they were produced

Silk turns Bitcoin into music

From Video Description:

The installation is tracking the real time changes in the market activities related to cryptocurrencies Bitcoin and Litecoin – independent and uncontrolled by any state peer-to-peer payment systems. Constantly changing currency rate of of Bitcoin against major world currencies is influencing the strain of strings in installation and the way the picks are hitting them. The robotic system of the artwork is directed by a computer algorithm: influenced by dynamic changes of data, the installation sounds like a complex sound instrument.
Technically, the installation consists of two poles of 2 meters height. Each stand sprouts 5 diagonal strings which correspond to 5 currencies (US dollar, Yuan, Euro, Canadian dollar and Russian ruble). These strings are pulled on special automatic tuners moved by stepper motors directed by computer algorithm. Each motor features high precision of movement, which allows very precise tuning of string even with quite insignificant changes of parameters.
more info – vtol.cc/filter/works/silk
the project is co-commissioned by Laboratoria Art&Science Space and Lykke AG
Moscow, 2015

Granular Synthesis + Time Delay

Because of artists like Fennesz, I’ve found granular synthesis extremely interesting. I just started reading Curtis Roads’ Microsounds and have wanted to use it for some sound design for a video project/installation. With this, I basically just learned how to make a very basic granular synthesizer, and then used it to alter an existing house track. The left channel is slightly pitch-shifted and the right channel is time delayed and drastically pitch-shifted. Half way through, I also change the length of each grain, as well as the time between two grains.


----------begin_max5_patcher----------
2465.3oc2as0bpiiD94jeETt1mlkgx5t8719CXeZeb1oR4.BhmwXyZKx4xTy
429J0srAxALxD6vd1TU.ZYIa80pUeU9Oe7gnmq9rtIZ1uL6Wm8vC+4iO7.zj
qgG7zODsM6yKKxZftEstnpb+1n43kr+LurPafqQ7M1X9RgF5ba2VWUuMy3ZR
dXfU6Msij5aEax7kcZbJYuAyhdNqbSzrey2kcYlkujWt4oZ8RC1KljtHd9LI
M18k.9jZapaL4qfYS0y+9OSRh5tQ0Ya0Fc8S5xrmwIbr6R+0iO59XdfLjs5l
lrM51aqQ+YXZEUTUsa1eibVNE8hbpS4KjKxW5ieP3DGKfGqtN+fkDcCX1TsY
SgdfBAABs7RS+niwb.hID.t3sedVzw9nVsuGqyLTfmQf0YZ5BQOqywQiHZiu
CnkxSb.LHzRU2BZK0exN3uCrM4a91zHpauykYE8i5DP.mIgsznn+EQMcDQ8y
6WuVW+sYFci4cg9Kpa2ZIwZSHDE7IofBd7SEoW86hwTNuVuqHao9NHs6gLmE
fIM9Htruotp5UcOK6r26xtWne9fD+SgM8JUuh+sSjlrW0qdx1j817TlwTm+7
dC5kyCcbCK+IqIeoYeYtS56Wlw4wy8WYcUQQ0m1TT8bVgQucWEXs3vUsNyTZ
VVU6lm4UkmbUmYec4Jb5CqaQaa5vHd8FSVs4h8Xa0JjwBSvn1lqpy2ja4WE5
xMlWNdzl7k+ww2f1d1M0IjzEo1+RDscY2KYM59tG6xsqEW.h+m8YE4lubl4n
I2tSxTqsi0eym8avk.gyQRD8mllsiWyuCtDj9jp.r+PFSMw6Vu17sYax+51p
mrpLWsUacsKUNi2KeXcUooz5xCbK9G04tsbir4J2inI+qvkINEUWj2kR7dpH
.tlUbzwBYWf4cStpXwvy55owRUPFoTIffAKI.U1pw1szkUa2pKMeuriaa7rl
WxWaeF+6x2E6I9pQfIPuTTnWJwmG67axB8tZci984HB+RKus2aTGv721PeK5
RJ.bhB+JNFC75BH+PzHvC3oUYlr1XuOXX5gVY4CXy11g9xm62mnbyv06KQMz
1eurPmY2BLScwdjsZk8KXVZ+vdmhuduQEdvJa.8NA7ROzdmxb8N12awE68pp
sY4tekB9CHuXGqsaS0sPDlEW9lBFZO4Am5ZtUSRq3.6nNPEmsGdqbd44yuTR
mzkRAy9WPrb9BYRbhf3FlHQJkpfFFwxLkrDZpabLUvONhbgaTpDXbrfGmU8A
73fwQCSRkd3YEp.HitfPURA.qDZvrClXghykITfMRCaLIKTTFG11sHlzwJBP
rmG+gK1yupXuPcPtG+0.Up++f4RjKjKTVXKXhqaFmSGa63++qKfBzEPIZh7J
t.JFQ2mMY6rv39kAGk.rexkX1o6M6ErQF34key4TR7z.d6CXYUYIfzqy.XTz
4PduL.9OZoi1Zx.hoAiGr+rQS9fTWXu00USSTxWuXLbIXChC5O48JtSSGQw8
+98Is.LYxQt9ekzRK+gLxVFUcP0U+VDcNJ7gHh+SVEaSyBd.pzEbv5k2GAFs
WNBaDkwKxK0e6cA6.RK6UkG7A8xSnXoI5E9iZcm7QE8gmMdEBRRBVEldSCM4
lTpcvA8oHCGckZo8+SWi8gY3Xiw84CGOEq4ZJtjip7.MemkQzeVt7WyFZztJ
qR1lixFcWpIHee.cjjEPKxiZJcQRJSRRZCG9lBF4RxbMZCxetOEyukmy.yLI
8V.PxMYe448Fy6Tv61cWvFMLhnjqWMeB4GRym9UPRZ.GOkzw17YQ9q5EarRu
clMdMqtKnvu+pmUx9TtgH3J64U1zo8oHuoemoR8VVnonAFfu4z8dNdUumjGx
I0BrqHf8TNvWyJ1qqV217gT3c31WTUt4x7tS5ZyKU0l.6aKKL9LWa6VTw7Oq
5zL+lqmAK+xyd07xbiKr+VUqc0263Ns21otc.71D5b6ks6hJRMU6tGURGEl7
Idn+SPgLZTwaVs4S4kqp9z8C1skjo2ntuoft0ecU1x2mynwWUSfveLHDsedV
6BGO8gN.NJ+li0H7PbseJlZp1Wurki1lLzCOlU5FSdYVaMv+0t.4NtSujuZk
93ZjGsM+DuZDVqbPbgHN3dGHOlJQhtVpbcL4XUdqxabZ0VcYS.iNzHCGZDDL
wnc7SnP6erjNh6DzHWaUa7lNIgLc9PmMj.lMCXYO0ULCWdxUo3pJH2BTSvpq
J.1ISLr8jpTHwcbLeUJ4ApI..xQPd3My+DFToUIZQKMFsxcBkvukiQfEGG0D
fMQ.XKYf5KIoH1DnwKrnumPwQsmdrATS.1bkr+pfKcXfShSYJAOnH9yw7ITD
k+naC5VAp6E3T2F3vbC4WqNkhIAgS+9Of5dANWA7tczws5Lnsj2KHPEitzGl
rKFyu9b+vF4VE9HGs6AnlBDPC.AhgYUsUhRfG6UEpFDntWHfLvsHsPPJAQJt
Bjh.po.BSlcUQh3DamSi8EVHNJNvU.hHFckAq8lBOSZmPwRwvfwieEPMEfKD
OCHwCzsMuiZ3AAKAOX3mRwH.VSwcO.0TfN9T3TJhNFZo7Xpo.AgnClMPW2Hb
ZmL07VYwISBiDx1mA5eFUgE6Aqqm68LS3olBDDGBBFnF.FVFZFmd7tb9zf.Z
PgdOPkvdtdadDHrNpo.ApIXMfJRPwG0wqAhowSdpLz8AjOjDNPESPRz7Nj9Q
jnLJKPe6FRLsBueE9CSQZG08B.uwBVvH.OIaJ+oB4DJ+amYqgKxDgN5360Tm
uPSjDUP54YCKbAe7NBetxUGnlBDDJ.FNSmiY42KeATS..HoSPHmJt3iKjSRR
nArM.gHFJ1HwX+4n5IfZJPfJfTQSGXHABIeQBiwHLWh.kXtB8oEbZ1MSjign
zHNeBJNXwG27gFZjeCI4HXpDTwjiRl3oTrX78vh3C8KdhzjPl.MIsN4h4VrS
SxDgf3.SZ+PJIDxz4DXGXpLti5p..KZa1tcupqa7SBXtGsM62qfWeJ0bfLuD
Ig4PTs90719CGKknr5kujazKM6qwJO+4DYDNzpU55x84PI0ezw0dzWg52Tn3
CuxD6WkW8uLYl8MO8O0k6whXaYVqy1WXNkC+7l04EEKqJvo2wGrj1J1GgWs8
cktqutSlAMkSvyulUKlhJwWVJEUHNZIvOFR6f3BdZL7BHwkTqgH3WITlfM+j
C6ANL5gmULIEeBwoI3aiDy0DANRcGFVV4Fr78ziN7IQ6pq1UU28Rgufk10+8
lpM0YqxcuIpsqvcmgj4dAzZ6Ue6ACHZqkgl2NF3sI5ud7+p6sxYM
-----------end_max5_patcher-----------

Time Machine: Starry Starry Night

The idea is to create the effect of a time-lapse photo of a starry night, well, to some point.

There are basically three parts in the patcher. First is the generation of the star trail, and then there is a very slowly moving sky as the background that interact wit the star trail. After combining the two of them together, the third part is using other effects to get a 3*3 effect grid.

I’m using the code structure that we saw during class in the time-shifting lecture about echoing and rotation of video files. I changed some of the parameters and combined two time shifting process together into one video, showing a picture of time-lapse starry night in the sky background.

So first part of my patch deals with the stars. I got some photos with relatively high contrast and resolution, with clean background and nothing else but stars in it. I then turn the photos into still videos that last less than a minute. I made several versions of it and this one works better than the others (sourse: https://jamesrayneau.wordpress.com/2014/10/01/a-quick-guide-to-life/)

a1

Then I found the picture of the sky (sourse: http://free.gatag.net/tag/sky/page/3) on the left of the patcher. Since the sky serves as the background, but I want it to be slightly moving so we can tell that it’s changing along the time.

Sky-Cloud-Blue

And then I used some of the built-in Vizzie modules including Maper, Alphablender, Sketchr, Mutil8r and Foggr to add in some diversity. Unfortunately the computer in the clusters started to froze when I run the code. And here is a general picture of what the whole patcher should look like:

Screen Shot 2015-09-23 at 7.44.39 AM

The computer is time-lapsing every step I move… I’m a little worried it would crush and burn so had to go with the basics eventually. And excuse the buffering in the demo video:

First, the starry part:

(There are four sliders to change the values that could influence the rotation process. And I think it might be more fun to do it manually and see what difference it can make. )

And then there’s the buffffffering one:


----------begin_max5_patcher----------
4350.3oc6ckzbaibE9r8uBDNStjQgSuujSSRNj6Y6hKWtfHgDwXR.Uff1xyT
y+8zKXiRfDMHP2jdbbUlRraJP7952d+dM9029lE2m+bx9EQ+kn2E8l27qu8M
uwLjdf2T892rXW7yq1Fu27wVrJe2tjrxE2YmqL44R63ahydLIpbSRzSwEw6R
JSJ1GsIoHIJNaczl3OkD8vgr+P8e31zrjU4GxL+0npASWatV42+y+Yjr9Stu
7KaSLiWOR1gcoYaSJM2QvpAeJtb0lzrG+PQxpRKEIQ3kf6hHH3RI..Dz6hfT
fdHrZhn22d4xOTVe8.5A+s29V8K2MQP4SoqSxixeHZeY51spWiK9RTV5iaJi
dZSdY9hdna1zoanhVWRHRIEpoXtlhQ.p8GAgv+uufv+3WNMASmNAyAHMwUQp
PgvCj59sJZpnOB.tn4Nqhw+CIYw2aoEP0b1u8xu7Th8Vdwhl6sWS26S+Ey.L
MyZ00tHYuBoiKSyy5tTi47kJ9ZBzvpCpdo4Z+wr76WkuMuv9wAKYTfTn+LL8
+31eCwIZYiiwK2X0Z99AMxXbfcwPbR7GNm3OT3M7GonngWBPJB1.AvqyR.Rs
DvjVo8q45.2ixACuJ.vF3mJkWmUA.jZ3B3FUQgF6YAA68MHVav1hgLhOvv6M
eusnXbVVtkaxL828cQ+m8FWUVoGaeTYdzt3mh9m2E8Oty3JyeKxZVWgzk6i9
tuq9B8o3hLEzatJp+hmJdG78MqJEJieZfu4S7T5yaa9KSS97mR2mde51zxuz
Eixe3g8Ik0n8KXo2lu5iIqWWD+39UE4a21cod01zUerbSQ9gG2zcbKSwlW+G
Xm3Sudh6ebW95jt2T2mWn4B67Y5xIhZLdWSpe5WVZvC0qOq.+Emha7mSK+vt
3xhzma4KOgzNlZMzSQKEJscDYOR7GwzQNMSGlYuVDVy0Ba8f.hAyJqWVxmUP
zqbV5Gh.8HRyjmDnR0dM+d27ZBcFUVDIZIr1vAk0X3.I0ZxPn4k3Or69d0cw
uP+mtSIKqh4vYjvUSnL.eIoBIrQKbFj.cAHQbYYwgzF8Op2YGNa0l7hO7k9f
H7hNx7cIFMSzG9b55RiTt.qV3t.c8OjmU1Ht9WKRi21clGhWczRgdrZqCF2N
GoRdgwcIA4UQkgvyJG24w4m6AmEfSgy2tvYsiGBU.d9EOOg5qs4wq2kreuR4
KrOLksHvXHZ7XHTwSVqIjCvM.o.Mf7+kfik4O9nhZ6AptLOnGi4fyBBXYCHf
XxkXhTp8jqikgle0+rUOFW1KFI8.6zPrNHGQMBW86J7Q6SLl3AVmG1lqtH8.
KRpKrNZv8H+26Dozwdr6f416erykBVcAzWJhjIIjiudaTt0cz2rvDrf.oeE8
hO7C4EJ+.MAebAKnu7ahSu6nWO9aZF0avIsxI9vuAsR13GSdkjR4ljx3nuuO
kuR1slzRG.Sf5nXwGRKmPyx9UwaSh.5zjB.JlBEGAjzG3wuQrbwbT8Ci0wkJ
DMbHpIQ9IEJLkB5KVFo3rwxbmU8h9+CXKa9wVpqXamnBDCwrRlOn89HZe.5o
sBZTRe2.+71wwqNPLk.ZfXFb.HlNePbgNgN6yOTrJA0Wt0ZYoCnRTv4.Mk1x
FWNTfVsKGbV3D4+4zxkE4J6N+z8Jg+05bDE0O5AcIgO2cKEQUWiTRlxqAE9x
wJcpDz.gUglQqTQOjjr993UereXEs3BPqicAS6QDDqnVhw2HEODf3O+if.rY
uIfDlhUcHqSWxVzo4Ie5yoYqy+buPFdw47tcvjN15oLFKZ9w32o.RGwWgrk8
5TW0t7WuL2pGPDkIWrfyWLux1IO+TQzOYdMM6cf2+m.Kw+f52f5eSzK7RutB
5zkRDlCoi0kTLC2j6OAPrDUsbfHVm3YAwI90o6TtvG888Kreq4FOi1JWSEzF
LigCmEnhHEl0ObwuwLXeDbAaYwH9HpmWtAWekr6R.m1cIf3Uauz5jc4lcj6R
1eImWBQBViVBnfaTZKjZmAr4N4LpIfAzUU4MFmeWkqbVa79gzU0eYaTQxi8A
WPnidDDTcqvVHq6txQ7QNkNIe1Yc9rcSdmI1Le3W5YUHiIcJYFdKaY.seUFk
FceTZu3Kdn7kTGM+jxWxT7rWWVH0lzvLRiSrjgDrwyYtQf8hdjymbjqNdgDs
N8i3gzioya8.Ru07apKngkMFc8i0iSUfBvKsx1lT11T2ao6NryVBV0iklUOV
eg.oS4KRJHnwxbRUgbB6oBBsYgCyBgIm+nhL6E7EWZcv3HeId7ln6V3LG4Ou
W118SyWJuB7kSM4ZbEH0m6MCVxByYz1pK6SGJsACz+NmAQPepLbpLcch4FBv
gqXOp2oGXD3DxqHz0eudvieudNxeFDrw9rjL.3RlQ1xzr0ImjeTbiwO1UP9n
b.ACG6nNSkVo38IkJFxHRzpMwE5v0AQbT+LnRummxI4nHraDynVwbtHbw+se
.OEwfEWAnoaNXvJuRpkQGDY.doNw+646tOMKwVN36iNrWc6FEu8oMwZlvrrj
sQ6h2+Q8n8Wk3lOqxZc15uMqUbDuuZEuCpL4L5cFM9XauhgwRaV9sU7MgE3l
M3eoKFke7g7sq+wOW7h9LXU9tmxyRxNcaFbnLcqn3cn2+6wj8Jw81JAVZdxr
FPvP7FHjsPOvLuzM.Ah2.96SdCzUl2.haa8DOwfbxt8RBl8t8xUav1M6.vP0
cXqVmYfHag32yj8vpC92GJxhhq59LUvS4QqOru7Dh+Oj+3iEe64Rgf1mdACX
LYsBmqGxvTSKPhXZ0.TvRr5ebRSunGnNIq2hxJ5mp63kHB.z7tuXems3gU2c
vdadi4n3sbUHiBIKQziKBCr.6gndNegBwkSqNgfJmJa2qXoRcQighIU2PHZa
Spor+.G7xd1BGBiTgOQfXxh4G.ESC.EJBQGaGDowOLYdvOIj0E9PSC9nThA9
fd.93Sk+i2oVEzEE9bw+0gslKjSC.EHrF.QBO.frIx+wQs7epE54h+i1dUmL
7Ar7eHpGfO5zfOkUvNvGTNOvGk2k6SBlF7I0a6.AvXKtoOBA91yANNYVO+.b
1ANa1fzGjPd9P.X.YOvDUcw5H6o2J2YR1itDn7nU6c1zMchjJUWXIPrvSokM
6SIEkGGoTbj9.GKRwr+4SmO18eLQcs+FTnC1aTSUvwjE6vNF2DkfskR4Wwoa
62i4Ziwut4ZCJEDemqsyqUlMQsxDIrUqLVEF2r4QTqtdhXhZkIJWhvDfG7Gm
Nw.ZzHFR45GhqHTHiLawyzVDnPBchV0.5TVfwR9ha9Ma7aOCbX70emFo1CsJ
OsSiCuQ98keu1hJ4J2HvUmfmXaUf4kMzeniuFXeUKB9JTQrmAlPDtIEo5Jgf
qTcIzc8qLfGcBM8EPeUExWAcjZSNlYv1BVRF7dQkbazJpDaCMKgvFtoKKaJP
n1MDDw+MgJg1zEpz9NYDHeU1Dp0rkbhrs+SqN3lu98eJAca09oDqDKEgMtEp
YaCdim1mwzaqtmnBkHLVCJg4++9McTg9RuNcaZ84Y9sPel1mairaKN8Fsm.q
2i2B8VJBb60ZoUl6wRC.cc5mz97aT90c2jRrFevV60L9sQKjdq2AoDjPerkh
Up5p887526nhauNGsBmPcb14J0yn8AX3ariZiJzR2rD5r4AvAuYQwWidE0O8
EZc1FpxJiMwUgpaPI8dRBNP2kcMZDJLFYPotNZS3gqGn9g9ybEBeyhTUNff4
graYQju9ZVVp8nRuButw5PV9sU+HVyb0Mq.WsVisekWXRPZM1IzFr0NanOzC
avP3sQGvho2VLbUBmGkEpqVqupqk6g680a5NesJ5TFk1x6IkAu5ugH9MQt4k
PxLt69Dn9XhTJgAHC8MInm2K7x9pLC8JFx1SxTD.0d.9LpiIRyGw7vu7EO0M
Mek5wOdcvF4UE9T+zFLp8aZcx9xzrlJE3ccNwZ57o1jtdcRVWHYW55mxUVY1
WeNsILNiQUwM0bBhSXbyy.BN6LSn3o57XGgz1gBsSzdyltW6u05SumZthB5C
ElAQANb.PXFue3Nb+ne5xLpEEf8LbmSUXOs9v93ki4Czk4B5hGG0HU9moyQq
DsDin1yVCoMesMC4CZA3j.i93TNP7Ju.3N0MDbjvqEK0caDRYz.qSwITHaDG
amvCfrj4CR5E2+3SQXX+QXuPjctHrJgXIxXFoOZpdBuHQP8BQg431SM8qCkg
bQMLDMRIKDwrm7FGwDB3RbkiXDyycqNC4ERxEUwxwQQ1abj9Teq1oRkaY71i
Zu1Y7.IwjN4AiXjreTUbpMmqXBEEpFfb2IF2KqTNQWFgOXXbJww6nQZHGxPs
B5B8C5VEhxM0Pa2SR8lI7BVKbRPejxEPdmyoalsSZrpv5RxsS3EJC4jzANbt
15VDGiFq6JWdkvZnSxGHQ3vZna70ALvFmhrwnROPJ0fN48h9L.NXPDwoEMT.
uivttnMJ89fV+3H1Fk70VXqG2KxqZxBM3R+noKLqy8OrUSTWyAsS3MJCNHkE
R4d2rCACnf+7XGZNCjxcO9B0cjS1Ovf.dG4THY.V.uiXdweFFU1weF5o7mg5
y.6cIaEhvYql6hDq9orYGk5CCzHQajpLJZoNzbgN0nPIbIPZSKc6D9HqPtvA
ICmXuf655dftebQunLb2ORWbYTFNUPR9bv+7prkRDsGbvDRyiZuix+V6D9HM
vBWk2CDN6DeX3BuS5ha47Ql3KBylLOBReRJvI5pOiha1etSNATHPKI5Yn5zx
xZ2cy1I7AOhSIzjegX.Yo4TJAoIUEYKvHSuSbpITV44MX.Dwvc1h2lY7AH3.
FPviMotPy9qoD1apBwWNz0hTFvii9oDl872gyflGa6l25Ci4tXbfyF2hAlPW
BqOWSPRp44Zr9wbuDQa2Lg1I7Ac4T3Rgym.GtavgKoMbWxYCmdIpgT5O6brK
AYc03dxIZO7InB7wph81Fw3jWHiku2JrRUb1saSlQbtcHermRNkkRvEZUAdj
ATpVvFelITx03iVN6Hvi839p4nl3vHf4hV0.lYchSYDkeQlbULBJk5J+Kj1d
X53g7vJsSDC9x7evXTRVYspRgV6PWKhAMxjDzRL3FhAxg1NnsYrqE0XpAxKa
sg2vnAAf1hsqyL9fnPyukBBWXsJvesgBt+LT3hYeQ37JB6TlaB2sCc9Wno1B
SSa9Gbjy.9vYdrSaEW.WecQc.8hh1UIxyNJnVXaPsmYBHFSPFmTXjtQ6VOiO
VTbZOIB1ZhSEI1nKoJVSIUATdAR6qhpLS3A7E4BSONboiF4jE8vsc3NURMgK
qjHfGrlVoVUzdzR9pg7AmmKgbDv5dvkjQYf+.sk0NkZIvDRsjPEcIuxgPpfr
jVcHM2YBerQiNIfiGWV+PTlI0AXoJpZLEnagDp73gtZ0LrDe40LrIOAuJ7Pn
+bW2QRBMERR+v39EjTyPWMRRPmTkcSZbNxn6rNaNmbBcXw0OmedUBesSb0fB
NYBPARR5XFAsTPUugc9IZy3Ui6odLWWtABH9Dqz+5sFhPIZunwzyLN1drkWQ
8l2c8ZwgoIHf5rHq3j0GP6xyMglsn9Tb+EBB0S3Enf4ZZvFS4k7hzpXWNaRc
j5sWMRANV94Wmhn1sg5Hwct+1FJSv1CUylHxXi1xjLALArDqHOI4t5zLzNju
nEm76YLzRa6bWmHr5cQocLeQLPWbVNT0km6oNcDtUdTSo.QB4R.jwM4CFgD8
MyfXssGtie5oOkTru51yPVK1E+y1CdN9cu0drLk2dxRtnHQerXZ+7l1OeQbw
pMokIqJOTXak8mE1tieg9TprH6PZ0gFg5a92d6+iB2FYe
-----------end_max5_patcher-----------

Ambisonics and sampling

This system I am still working on completing will be for the larger project I’m working on for the semester. The system you see is built for a live ambisonic bassoon work. Using the HOA library of Max tools, I was able to create a sample based system that allows me to automate where each sample source sound like it’s “coming” from in the 8 speaker array of our lab. I plan to finish this patcher for next week by adding live loop control. Instead of using premade samples, I would like to add new samples live in performance.

 

Sp

 

<pre><code> ———-begin_max5_patcher———- 6031.3oc6c01iiaij9y87qPvX+zgN936R5.VfMa1b6d3taygM4vgECBZn1Vc 2JirjWY4dlIK17a+3aRlxlxMorY6dx5AI1Modw7ophEKVrJx+96tY180eJey rn+sn2GcyM+82cyMxpDUbit7MyVk8oEkYaj21rU4a1j8X9raUWqM+Ssx5gc0 TrTVt99e5qh6qrdaaYda6mWmq9slMK5G0WZS6mKk0Nq6lq1tpnhe6xePztJU uDYsPcsqyZW7TQ0i20junU8pgjDvbvsQTLV7EJcNk+IZNH5GEOy+3cuS7wsS CtFfikdI.GhhjfixjeIQ54Bb87RjM3FeIfKFgCObw1fK8hvcQz4Ht3JINUfT F4jvaU9G4P4.3tpXYQQkMLiGEyEUsNCan2vlgkLVbBU7EAEJTuNqYi0txnwY 12t6+EDAqecZTl3iRYjDCBNV7E7D6.LBoYymdntYUVaDh.h.QXTDAFg3k35R i9WiJ1D8aJf7+.QhsP7nwWJoFjTbIEH0MfvzSi1rc084M1vW5QENtOq5wcfj KgksJuMu4t7pr6U3EbJDfNcH71Zwpsqj2HpShg+zcUBdYBUBCcFThtorXoU5 DC3fFyyN8wAAjXfR6hTYJjPOycdhDZV3sHajjd6elD1bfmlRhEl2PSCx.ijn 00kYMQv4DH.RgQ34oPXBfDAl2cykEU4Kp2VIeBpktOWBa.QwJI9D3NI9X14k wuNpptMun5NaV9RfGeDEWQN3nJErfbFUNRAMU9EKdmbg4yv6.qvqFv2L6ghx 7mya1TTWYPauYV150FUeiwiHnR+TciwHXJMRpp.8U0j+bQ2yS6qMqg2xa4M6 sMJ3+oD1rculZtNlpsExlhpRN+5ccuvNvpD6g.hxXIIaVZ8eGZ4r1GKqW7g7 klsoY0qyqJpV2juIupMqU235u7x7Gx1V1d2C0UsaJ94bkR24Vu9CYKxG8gq3 55jf6qaJxJ6f2rGaJVVWIZDCH0hp69438vopQ7MAi7NpxVa4g4BcbxxHWbCG ja2beVifSn05h5tXacc4vK0+bk4Ozpu75hpp8nhs0qG+hMEO9zQd16q4Wb0w d2xqr4tsUpqdGu6X6caxddH0tMqrT2+b3q+SY7gFyZyaKTr.Dn+hpQddZyhl 5xxA3Uckmsbkkbg3E4erXY6SxeHSgA9sWrtSHZVOWdYwi4aZGVWa1iaFVyA8 +4Us8dcmz6ZyWstjihg2vf4ra1izTS1f5OlFsgZ0JdPZr2u82x6OE09TdUDz 79LTwgMqebc6ifxwFBbb87iowKUM1WBVoKHd3Hg2zouWqCYhTLUyYDJAZ14B pfiCULRNdFloLno+yAz5E0qVkWoE7dsHAvWKR.BQtbj.m52vMOW2wIJubSdD XLRFj9FoGDLUM0IJTYgbZP5B4DwCnHcaxaGmtAdqP2vczM0jygAhtYNwzCIF viSL1eFpJi8F01jWXNZGgjNhwRdPsQuPOek2vfoRE8D3kfXi9mFhMP517KJw F+OKDaHk9JHYOt5W07XGkOPNJeXbug5.CYbB99yq57vHvtwHTq1.AeTFwtok IbAxH1iK+QDW2NGZS81lEcTRsQ0QCskgO+h1hp9Io99d6s169dpX4x7p8IYK K1HDzUStxIoIeawRyXbpMid6zlExztQmAXGa0qJVttlK9uoyAcDoBTkGnLKM 7W8UBqPmvJZhXMloPmZtWJ6fjktHXE4DVgSDqIIlXMF2W5UGqtpq.+FpeGx0 9cVzp3D+QK8gfJ9ix0+6UhnKI6SJK8py6blN.NOzAFvRI0JlQzzAL0S5vtA. kCiOxHf8C9qL.42WtM2zaAc9K0NkKawB973WTWpbp76i.ywbsMjXNMYNiRRA HwekJpBx6GNbn5aMXPM72iMqMlsh+iWXBQaL38.werIOu5jPAPzroXw+D+Ej kvPwud.3ulWVV+Q2QfokWuWZ6EME.RFHtXAkIHJTxphS3C8I9C9yQIzyFP0u itWvLg+gWdmxW32k011Tb+1Vkjo4hc3kOaerr99rRsGY6oiGyAt67x6610k4 bsbzD5agki15RRBTAshRKaXBUAC2SyTtJxVv6.QIm9hN5+5MiRAykAuCzpqn O6T.phBfrRAXWBJ.li1Xw5QivuNjf8Vihgj.5EQH.feUIAZOlBrQAfWDJfNv KoD0joAAQQviYs4QDafFvbJXtNwfOfbr.PkIQNMtK5CNk.PsasL1m.7bdY8h h1OagDj1q8aTuuXAz18txoFmJTfhH.SjeoBsOvYlVrtf+CaiPj91gPPDdTkw XhAHR0KiWPHF7ey7hmyidnodUjHlN97G4FtjasqB3MD8QIaPP5HcDdRDmQMe ZmO7cw9owIK9YY0zIYni12R52ERRpM+Fe9nX3e0Pw5DxNOTL6iLMva518jtO dQ26tl6447SfRhcfRp+BGj3ObQYNWnorz1zftDYeAJEoSojDrvODBU4mDvkg flsHGkLdvz18L8RKCqvW65te687NicBHXfuV6ffz4wXLRPM3y5XdJ+eITQ3V RmKbuADyoRBGNw+GFZFFhsMaZqaD7cQi7o5r4nkyWks9tmxKWCmMAxo3ctsv B4D6x7AEOs7ILHIAxFYDKQRPXvaiRwBZVBCe5w2+8aaaqso5gN9fdCUee9mQ HnWJvnaiJHdDed90WD8arMaPJ9BnuPm1FXAIPhaZXzS9wlB9rgrha7kPOIQE mZFR1TzqMvStH.Ol85.7l7rk1wc5kHd6o3CX3mllrwlby27e8e7M+mQ+2eaz O7cQ+ee8O7M+one3O8sQ+gu9O+Meaz28uKK78e2+6e9OH97u7Me62aMKEvVF uMXIpAV4MDQzgQ60vqVyoyoFdH7RogGgjofRhNGi597rJtyMTXsEPibIkil7 TagyooTXR74JSVSjo1IBHITXjzqPvybNozjuNuZYD2Pv7l0Q6Llxh.ykhz4u DFIU4oDt5EBW8RbhHHUUUAOyBZB8DY1lELB+kinVG8Rs9t3zShRsml3my1sF XYaaqEhW2w6cdmwZp8dxOd.g8y0aiVjUEkUtoNZwSbUR4BGWqkTqKUK7sE5N 6kcQk3GY3ZDC3yT6VK+gQ32754ATxt0W+VYfUdJN1ZcVUts4Ci5yB2F9vbKG jNMVf580MKUIAFbPMCHihkwv7SSpW3HJc41Z8xAtwfKwn8YTOi49GGzbSIXD QFN.TBHAY9Wls70M0qqa5S5q43zIvFdnrlCVa7gjf6rLUxZKpgEJsw1x53dx tYVGO+nl9niyDFUZVnPus1rP3Y2b3EYkk7NshLV2pYwnzufLUPS2LFuqKz5B i4B18AEF7kiIB5sEEDi0KpEiBhnFTjqYLQTN..1VzUL7KGAMso6ZSRUVvetk wDVTYjt3lTJji4HcPnVXuW7fNpkNr4NMCPGc.DL9WUCfrarB3QGqnqCrgNuS brhgxil1stMFGy67RAoGHsJLoU5ZZabFpmAVvqntQxKK2hoo6Hso6l8YmYi4 Buwmuenxsys7ZndmJZVuSspC2sLqM6NAr0A4J2VK4+8UbiuRILjLpLgvXLUZ FoHtGEeiL+P56nYCdIH06YNfOsYgiSEw3YLHIwm2AV0P3WAvY3X0ehiYzt2B zk2BQeeoIBFh7c.QP+PCUeeC+3fZr7jrI+jwS9ISl7SlN4mDBl9iBm9ihl9i hm9iRl9iNcII3zEkfSWVBNcgI3zklPSWZBMcoIzzklPSWZBMcoIzzklPSWZB McoIzzklPSWZBOcoI7zklvSWZBOcoI7zklvSWZBOcoI7zklvSWZBOcoIxzkl HSWZhLcoIxzklHSWZhLcoIxzklHSWZhLcoIxzklnSWZhNcoI5zklnSWZhNco I5zklnSWZhNcoI5zklnSWZhMcoI1zklXSWZhMcoIl2RS28XS810GLwWYs8y6 clXmSEGIyu7wlWX2Snv8rYG1JN3VwteqD2uUp62Jy8aM18aMw8aM08aUOYR2 tWnG2qGLLnGbLnGrLnG7LnGLMnGbMnGrMnG7MjG7MjG7MjG7MjG7MjG7MjG7 MjG7MjG7MjG7MjG7MrG7MrG7MrOJH8fug8fug8fug8fug8fug8fug8fuQ7fu Q7fuQ7fuQ7YjMO3aDO3aDO3aDO3aDO3aDO3aTO3aTO3aTO3aTO3aTeLIwC9F 0C9F0C9F0C9F0C9FyC9FyC9FyC9FyC9F6k3a8a+Bm0km6fLA4fvVvH2Qh1+t i9chMABQzCYMw3wrufBpA8B2g1ETCHyEEsKxn1JV3t9Uu6.527eZytPqywcH iEkE4UslMFfJWtEZeTaxC619WN11p2LMeZvdKnZu3ga9u98cJxQiEmFqq+nX dWTax.we4DhF5sQfAwPURPhSi5rkBZo0dMzjShhsaGKBN8TW7712RjXR.U5X GmfTGSDmDYc6p7ps1D1dwj9bXPCbBoIqKTnh17Ua5SLfMEKD+52J9fil+Rde ohp+mmx1jOyLfOcL0PMHsIfDy8.hyrH6+xuH1DkrEreiGoFaJdrhKXFvSrJg zjB8LUd9GlyynwAO4xAdTJoG7wmiCyowxCnum+qyUvvk7iJpVV7bwxsYkQaD g97laipajwVN+AKZxidnHubo0DABY4Hqabs7pzBcO0MimPsKyGmFBNVtyo1o LTaFr57Ehd1oeBJUj8MPkzvkKThMCGk3AMUCyfrGXngm08FJZvfGTDGkuhvy 5F+TvxjsTjTwFMI80AdVSZIbnPWLQiH0WzSKIMJy9bYwl1ew5t.wKod9V6+k 3+WVrPj3BYMe9DSnutCpItc9qeJWbVsHihP1wime0tcf9nmhYlJi5mRrnHVl Jw5Q1aHEG5P8VLtPrmD9UOflmU7fwt9m3d9.WGuN7LWVTKpw3FJqqWObWelK XU0Jl9h3buYr8jyxsMcmMLxMjwA6kgxMTnMOU7PGz265cImRuQTCeZN6W+d2 auvtYUlXKRrQPT62nOGdS0MEOVvY4bJyisO0Yq19MvGpEafipslPwgDS8K+p L15Im0Vr3CalcHjcqoY7CBQ62x1rNWk7QGR09a7wnE6XUiR3jU0tspPDiyxA CIVof1e8B14l1lbwdAkkV+Nd5h7tWwX6r2Se5nGqqO8sTO+WX.Lcmbs8Glmv JmVm7mxap+Pd90N4W6j+qyN4n23cxMMiKPcxWtc41ObsG90d3+5rGNj8FuKd rJWpBTu6lrhpMBIOe6guIubfP4bJNVtwPI1T2wDL1fOeUcvU0AugTGj+yKyV XSWPupfx5EYkGeEN1a6JHghAxnTvxeM5Nsf2tSLVcneKG0WDUDceNscentCO 3tUssH+ixyM1hNIfNzW+vChjJ27zNXGhTmHuKaxdb2IsJXmCIV7g1mZp293S l0evg15vK77gW39G2eKj3vM8BSs58d9Mq4wtUH42IeEFG.GyFrJ0hkWkyFtC OmSl3zFqpui8lkoTemnbcNFoNNcvm40OPuJw0q4cv9EqdJEOwg4b5uBy1a5w VAL67g3WjODmRM3CgXYWk4zskcvNG2QuN80cMLqwJVsaGxTa1im3pVKDWEIg 7QiWDaFqMNUTXemPhbv2SL05gFgWgoz4OWWq2nTnHTBD4pfL3369PFCj.6CR 8tO7eIa63TbKEYh.UECzlLZp0VE4H8gLxQBdjmyJ2lW+vgGX76nbk0UONNCb vst4o5lVGu2NtK1x0JpJDKY3gLMa20jS1c9ew3lxxlTxtqyScQxlmlP7OW2M R0cQKJk.v97RHGjv7S4sbMY2ulr6WS18qI690jc+ZxteMY2ulr6WS18qI690 jc+ZxteMY2ulr6WS18qI690jc+ZxteMY2ulr6WS18qI690jc+Zxt+kSxtac4 hjw+fd8jdmYLmbFxJ98Wr9UYq+Ek81Gdre8lbw5cZgkIScg4UaA6isv7xFsL e+5ipMEGP9FE0OjOnmrjhnISEP3fH+XY9l1hprcgQ0tia7ncmqk6Vx8tEvcY wFwBNpNPVrJR3ZCRdR79hsn8Z1guAAeK0fPtvyD4.3QaQqJVtttnpcSWV3CY pSwbcRYRI1JRTyglRjmsWxh6ZImOLtWqepxkGfQcyNViBn9PreXQl934Fv5K dwvHwa1nFhpS5BHClzWLDf.4BHXodxmPboNwDrnpjTDhzYt39EQphoJHqxf3 .fQlKXL1SLhwHMFUn.yvgEEItfBpunPEFMjTMmI0VQJPE2NH4IN19EIL8MGm JOBtjkC.Ef4xHKLjm82XX44LAAq3hLBruXHv.xY8hdABcqNVpjGRRIpzdcPQ pJ9Zghpo5hg.h.GfHM0a1jrQmnrmZPw.fg8Zdifg3IhgNU6FECAFhco6BbZX HECLwPJNP1Q.bQ0Mz2tKc8.T8KfhSjKvAEYpuhwIVJoN7niYxtcrAa0Umaz+ Rlt5qBOhR7iATFFhiisTTSKRU6vGCKw5N4r4fuOI8BIE.8RcD8kBvGci5HE. BiYVJpoAPHjHHBrPJE3x39Tnei6iYRSt3y2UN8Tr5HAePoDERwPIwRVJ.nK0 kIvR.9wgESqgJYVpw8RzrNiRwpP8FQmi3FxIN9lD0DB.5.9vu.7FjSN6uFl6 NMRGRDzJmhYIFppjkBDJgNfRnqnbvp8dDTlvmoAj2ATbtWog5AUEH7hb.uH2 vK7fk3dT7xHySvXYNI1g28qJP3E6.dwma9aJjYHEaVJPnj3.JImatZJGP6IE ePUABuTGvK8byUg.X59hwGVWfPLyADyN2bXHH1Tc7fhA.mIoAXXUgki6FV0b rSYUg.FtX8exHn.dTSeXJePYVJDSByEDfI9g.HT3yhtcuRsco6UUHvBNDxTD kF8WKywnn..BAwuSyEeJAG16HLyLvEW2l9BFgbfn0tIzDqbI1fAhBjawHgPc EF.eUEsHv.3qBgeGD5mT9aIVctNuWoWEmQPfNXhuunKFR5aygGAfSYzjQPfo bESs0EzOjRX7qGNHCsiAuxCsiSB.LPwwyo..PDrFulXwEWs5qmVoXoXDJIQu Zlz9hg.Bt3nUrudZCgk7.rxVqAECAFHN5EBlOCHlramBWu34fT8lewfhwIoC rrWTLDfzEqvv95QbjR0KFpWJObZmu+LKpc5YGaLP5ownffPUiFQGHJJKdwv. 3DwfhoELL3h8LXzDw.ZHe.EHL3xX9X7z5szoZ1rXHvfKCtDGPWHm.SMLOSVJ PvD5BLCpOj0X8fpBDfQt.3f5D4N.ueUABvXW.bn7hrFqlkBDLIt.yf5F4Nrt eUABvTW.bX8irFwGVWffLyEHGLGI2i13fpUFkFBiwvrz2Lla5Tb0gRmFB6LQ vrXHvfqtBD6kSMg64Jv941DH2.hHg.F.7qMLvgvc.54+SG5Nf.Y6OBDBa+w7 dxhHDU2iFhTm+RGTbP+dYwP.QGk07HpZLCIJsr1fEmOPxaNEgPdp.qK.gX.i vdaXoXhoWakkBA3Xmev04nYZroamowWv.21+X9UG41TnxhABfXsnxJABAXqn VYRW7PFHkItE.9SfBreD3mfMSqf9huRfjFDP1mJEZKIHJzseQcNuzAxfkyKt Lr.bZtDBpCWcyhAKlRew4gB7d7YUfgB6xFjDqE0lCRkY0irXPfHwIYQe86Eg oSy.svlQwfghWzkP.uC.5XYh5PRzYFmJu4jECBJbxZPTxz3Ec42GgLH6+zE6 4TfXaEopjonKGfnrKJEfMQJPWZsnLab+h5Q75GqHPyS1UPRubr4tQRBGe1kr UXJo0pnUyRTfxXVoxpBEPdQOBP70ZEsNe0jb3BjpQD1und7hcSZUVUHPYHbr idZoXUdC1kgf6WbJN1Qkp7YqW+bdyFcqThsYqx9IkazjoiOuIUoJJaiyZxE6 9Ap6WddzLKqYwSEs4KZ2pOL5+Th5HxPd3pzTssPuQIvopuSuqArW542u+Bn1 KD98kay+J8YAJmR9P11x1gT+rEhi9iA93DCiYxMuj4LJIEHWNlTQUPs++Tf+ VMSsg+76uAFLaE+GpniRYJDrWC7O1jmW4cKT5MRJV7OweAYILwtaz4tw8WEG ple73sNyMpAgEiyAzT.HoWpwRqOAQk6gVyiSfIxc8b9yP6O4R7G.7m4e7t+e .Yzl2m. ———–end_max5_patcher———– </code></pre>

Assignment 2 – Primitive Neural Networks for Generative Music

I seek to create a program capable of producing harmonious combinations of sounds by incorporating active learning to understand a user’s preferences for simple melodies and use those patterns to inform the creation of music. Through this feedback loop, I hope to create a man – machine interface capable of producing “music” from nothing more than a chaordic system and a responsive subject. In other words, how can a computer release the inner essence of what sounds good to me or what sounds good to you?

This assignment represents a step in this direction. I chose to simplify the problem by focusing on the relationships between consecutive notes, of which there are 5 per phrase. I also chose to ignore note duration and velocity as a factor influencing the relationship between two consecutive pitches. While this obviously has a great effect on the perceived musical qualities, I think it best to begin by studying one variable (pitch) before moving onto a second or third. Furthermore, the sample from which notes is drawn is severely limited. It represents not the population of all possible notes but a select few to study in seclusion before expanding the sample to include more options and allow for greater variability.

Unfortunately, there are still some bugs in this tangled mess, as I was unable to get complete and accurate feedback, but I hope future iterations of it, with more subtleties, will allow for greater expression. Still, the continual input of user-generated responses creates a simple neural network in the form of a matrix of connection strengths (or probabilities) that represent the harmoniousness between connected, or consecutive, pitches.

Screen Shot 2015-09-23 at 7.26.32 AM

And here is a sample of the audio generated by the patch:


----------begin_max5_patcher----------
5464.3oc48r1aiaisedleEBAE2ObuYL36GKv9g4Q6Tr6scJZFr8tXwhBEalD
0HK4UVdlIyh8+9kjRVhNwVhNQlVNCJZFaJYoyadNGd3g+6W9hytL+KpkmE8m
h9GQu3E+6W9hWXGxLvKp+9KNad7WllFuzdamko9b9k+wYmWcoR0WJsCunHIq
LRemquxxx6RU1KsdjrUySxRUk1mCrdvEwkSuII65euPMsrBNXB1DFSJE3yif
XFZBiC.Dx4QLvDv4QHzDPz+r9mmLy9JzPzqfPnyaJeU45WEvL3+4kuz7myeZ
X4ejTNwebD0ANRjSvX..xM3HpEGIztwQv1ww0uppgJuagp58Xf3eedbYQhFn
0fYz+b3HFWFmcs4+e5bbpDqoFXLTywQLVymYjNIF.9dRLpf15+8QQJtbUYYd
1SGig.pPKjy3Dw4ZzmaQYtl+ipPYx1QYoX6XLrSL9QgoyUKWFes5AbcvSW3e
CjmgwsHubBc27aIcOQ9AUZelJM9tH5SG6EPCBqwdMiGX41ZaAcHlKgAimenQ
csFKYBhZvX3DojwH39vdg7YD1K.SnhZQcAneVOObr99LrcYZR1sSySyKpQFC
buweZP.+sA5ROP.iIAlPqVPP1OxDNebqjGT2jmKu1Afsja86P.k.n4SbBDyk
aB5Gdoo0SZFQFfIQfTs3in1Thng9w6bZSNd6TMhWyZd9PLK5tlaAN.JYFEKI
p1YJDr0uhNmagSBxbKCl6CNbdBGZ47TVedOvYOK7d.gAM3t+LX9wz4gqiKUC
.l6x0whIvZtNta8cwoknsC6EyEqkm6PpNfdHrZ9kphgP8UGYCo1HUMRR6L3V
QOw8sHtHdtpTU76pr3Kq.KvNYvme.lX6UQCg0aWBChfmPjlvD5S4Vru9IkjU
Nr10z2Tz2M3D.AxpiK38JdfOlV2lluJqza8Bpu5EH5DsygXalefch8j8ziFC
6+7J8.y++nkFFJadbnk6pQejG16.G6Hhr456oi0BNuMGXHgbBFIk8OeFSbvS
y2vEqOBOAx0xvdFvGi+bNfOWpwiHbOp7a6v8zHxDFmwj6U3dTxy5v8.ZYJJD
.3v8IZ.xokOwtbd+C2iHeNDtmjiZwcuYvTvoe3dav08NbOJ7zRz1g85U3dD9
IW3dR.eBn1FkWQ6QneSDsmKcw+f8H3mKA6sA96crdDzyhX81Pov6P8HfiTnd
6zGlICRRqY7l0Dzcwf6TQ.KChfvNmaehbPx2gXBEfIPwdg5gIatWklqe96FK
uJuXdrESX6eVNkq43PulS.SFMyIraIhAHjYNE0V8OPnvJFzsv.5npGL.3Lwj
7i01+nbqXPmnL73hxIYIkIwoIeUEsrLtnTiMQ026xmN0fBIMw1B4.KkAoMO.
o8TNPGWwfAHVGB.2HGvIZr03weuqr0Ik+9TDpk4JkdFJK5nGI6G+v69veJ5m
huUEEmdcdQR4MyiVjL81nr7R0xnYpEprYFEg7rnxaTKUQKJxuL9xjTsthZ4j
AYtxFoCakz..XjzDPHu6YNfhS9YKQ7lJjjKnMdIzyTlP9nYNyCIwo04QN.4M
sgL1iwT8kEEQe2Uvn+a8eQCqW1U0eaEgRf5lPQO00db8wdejPveyIg3Ro1CQ
D.KLgjOXkef.al7vhl9E8AhMhDFFLx.hs2jA3XWmXU1hXsWIKiRz+2xnqFB5
DF5PmzdgnoPBdmzocsVcztnE04pwIkMZihwkC6ZWaHNWqJmpRSi.Q95zN1uo
UztkYsTHIcScfGyT3YIAZoiAoT7ZyhA.ZybGQzMpCNoLUJwvFDrNYD8Xgfv9
1H28NDlZg9tCSEs2KbyiNWs6.u+Z5jkqtbfQcjMlLDEYKdgNELD64tU5Irgs
FHoemsphuR+earxUtDFOk9wOSj92.02CoeTvj9GpTUInzIzpBQlgnMYspmLU
gIG6xyqolinCKMf2FOT2kbDBC1Su+5rliNLVAPCQoo.ZVpBpz7YM4oWKAH4w
d8qmFWTb2dryc6r9qHr1Hl4vIDy95jZzX5TBAchEwL.PMg.goljrQgSfZNMC
06zgHzytnlcE5Ylzx5UQKfP3Q+xWNXk0gKExQknOJD44Qcc3f8bHp0f.rarm
djJritBRdYcdBLoR4SwodmLEZWSnRVOgpcmNYLjXJPYHra5CTdrSYvPLYgiU
THzA6wrtQ9i5l2qpoeXZgF1kzaYDLxlWJLZ3lXoJ2ZHlznuvk1pBo6Do.oGi
NAxPEXIyTZq1cBfT6ZMWpsWH50BIDM1CtTGj07xaFffrZoOBAqwFJA2M8gbx
kgAcHjvIHZk7uQTvyIKgvuUDE1fBsGBC.Z3DF5pkPUjb8MCvlESRDFpfcpCW
SF83VAfbv2rXUnYp5pA.K4RwVsK1CqFevQRszrZZR5.TcWtLRAwQbt6ETBfN
1hylDnklLc.1XGNb48gB.O1Tf+mgH0o7p0d1x+ciNpmBdThBV9SGno1bQT2.
g5dlMn7TXlsqKxWsX.jEL6F1lrpzpIzs8NnfGLMgckqfWGcUdQzO+gn2Y+ve
+6uX8sjljorAS6BQOoXlDSjHLwFlTUVnYDaqwyzHszir8MRL8zpoe31JnfBn
cqvvQ8krcF5Xmq8jqh9tDXze9OaXTl59LKZXZIhaRQPhFJhNj4N2A43SJFuy
VB2sTu6gsCGOrcIeH45tjCWdNpSWCnG0zibq5NOQbPGdEJDMoAga8D.B5dC9
xdb4K7g+yfNuvhB8EhfQk4U6LBivQzR0+ZkJq0ywMlh.+z6krHqEAAi213To
q60DaseobRs1KTdKdIfUs8.Dq2pWczubCCfuzTAokz3v96wWZF6jZNBBnc2Q
I4zFAftmj.FPmCFrMGC.zfoBpvaLE7bnQOrAxKcP9tElomVVyHjVrjifq2hW
8DTHk8racjcIDtx58QIF8aakgo4e3tU.klUJql7zcy+.Redzb.1P3vYNeiSg
ch9Gq1CvPoUf0w0utSHvEdqUrqV8y3Qqv1R0d5pEZBSC8wDrzZ5Cta4BB6XG
w3WSmjpxd5D.jVCPT6lGVZkJ5C2oifLmOH3951+js6P5GtSFMUc5Ane5gD3s
4KAo5PEXWdK1WkHeu1nGRxI.poC5IPBA09IvAqM5cDnhtlT1Cp39064EXnvj
Um51RHHz8gvkpznAvGcLj21nd3sSO0c86.IfG4A0xfRClmLKQ+lFhMDGvREP
P61dR1D2c2M2SHlNbqS6p4prU6FURJUyqOVmN60Z2xVVlL0PPeeQb1LyG9kj
3rbyGN27m2TuJ8adyadOeepl.Tz4i4Gyyt8tW8Q8e69mu9JvttHp4oFWrXYx
zaxKl07zdaZ7mRxTksCnRUKKia996SymdqJa4hDUZyf+zpkUui2j+klA+aIW
VDu3l7LU68EWjL+x1G1+2co4adGeb0kqRiKrOKUpYcwquv6VkNMYtpncfh3O
eY0c9ghqiyZtvunJltZ4xjOod30907o29vQe6MqJldyVtakZ1CG80SmpoXI4
sinIjyyyRl1hXeTqmku8a9m03b18kHd+pjx3Vb6hRUE0si64uD+0u1ys71TU
EbugH1l2yOsprBI63d9vmTEyJzDzrsbw2krrLunrFEu2Ea+5ZZzRG5XKf+Fi
525K7CZqBphGBUabS+RhVLr6a4GJTZSAUCrwEtHMdgyfvcLdihxE2kUdyV+A
26BnVY+b8Dpm490XWUpzV822lmUVDeoK78wB077pa4BMlkcsKZ+0upEzJ25E
+fVJVqrVDmtV8t8QlLeQbVhiDl4mZIeYKUyMgt3hWa6pOjbz99gcbMTqZVdh
UV30w2zBz+sbaseng9bmQadNMWdSLzhfIkNjrUyWnb+d97Kumgk3GJze+elV
jIqxRvOlWj4XFul8bgVTyUYtU.nXmhFE2WZJeQQsA7KhaMW95zxGL1GUY4E2
ev2nMhVViZti+gKyaQ2uO65zjkaASz.StCBns2Wrg8dsd0zbGwyeHcUoxwhn
wbliU3eox.yl20aRy+bV0zAkkosiewMw2t5lX8z9MC8a2nMe3bKeXpAdZ4TW
7uVEW37Dh+bYddEgsB9iSSSxWnbrkmb0UNeSGfdkj74OTZ5GRtpzQlasMh+K
ye9eUwsyJ9ypOaYQW29a+Ms8rVpPd5cKWyv2TVu5Im+YU6S6mTkFndpy7GND
7K9rR0p29qwNlQtHeU1Lsve0bXUumh6zyN2NS7qKmmubwMJGZVkOHYJGCLuO
23ue62+dsS.JGkuoIu5GbrUrgI82Dm8G4trz4IKUsv3eMur8p+03zMlu+MwW
WIisvkILa1lxHYwIN1sxts5pF2AZQyqyuN+gSW9Ns5bKZ7a44ytLM2gZ8w3j
ayWeiN7iz7YUriOlO+g51aby+pROY3RKD816z3V5VlqyLwiUrIOYoKePEW8.
2b7KTwK09f4biIUNj8QsjfiEMsiXM9J8qINB0+nRKLkunzQs70KVjFux4k79
UY5WhIIb6qO4bPSdQj.QiK4PNuaex2QlgvOlLm4lMwAc4U3CxFShCaBawkD0
SJkCTu1bYZxrAor6ZQRSmBay7lKk6BI6YUj1uDnNzQsV26m7i1v8KvUIscua
C6IMZX4QdyqObsrDTc+uxVkDRXSFL5tsk.wjSpUYzMOMDBzyMoIDwOAp8zz7
7aGhhO0kFUmMYZOBAvSt8WiKRhjdudR3Q+Nsxj.p74Q3gUN.QYMjnt2YIPL9
TqfzQPViKRTSGsiw3PX+FEFOG8bCkOBtTBhouuUSIpRis4fZZ6G95iWmDhuU
Y5CsCP2LSSNVSZLEV35RxW1y4R+9tPaUc1sCRKda3NW5ccV.BPMMq3dNW56q
wYd.NW5GtdhHuwCw8vwgQzNycm8maTDkFQ4QLfVvNhg0bwAX2YRasjfq7gDh
5oMkKNlkny.5.kqrheNPANA2fxNHo+NPIkmH9OwGVw.+8eRBBk6SCUw45NY.
A6YiqWvO5klKDQ07Efo9ZMaRognJ.bp6j0F8.cllMww87pXn5rOaT7tLguEu
K7nh7CX29xcqXvYfVU8Na1WgI0IwkkEqRF3V8EzjV4lVzSe8jhdJxPCDVUKj
IM848C8YzTzP2UzgPfMR.tr6183w8roZocoqFljluw4Qj4TZqVbn6SiFzSyK
O6iztQwpqhm0zCKDZFeSpxx7UESW+npbIGXVl2FPalZYYRVrcUgcuKMEJpEA
tIY1LUlq2HyRVZbPY1tqSIegHaGKx4csKHBDLHROokGPjUuNnPTubMSHDghq
4CO6dzwCJ7H7hkQCG.QgiMH5dBriAHh5gXs8PCHXPjbjQij9HXKCG7vI9.Og
yPDQLtfG6dxqeIHT.koQdISa5DqgRll5E.YtKTX.HerU2qYn4IyVjmjUtbcS
a.MQTe3stdEDnS3083psLjYO7rNwpBLZcufpc3V.bvvbpWpyv8CykP3DX8g2
Mk.ZQJaq7Pf4xcONQV00BZId1QNTnduS9.2Sttzruj0AKBq3gR..fLaJMyZC
T0eWaG9PgTndPJ6ASUfz0E9X7gi1Ohr1SW7DaGgBgmHkLFwtRLLZSqwYmWvU
ICBLom9AW3.vV3XOnBh8TTqJ.7JgJW0I6AXk9ZZqJcbAh.3PgpomsCdnjMw8
ovgIgyWF7fXAXfAnd0dCn2mV.ZTwx7w6Jd3bkg3i4MJYj49oHbo2g4SlB3jQ
F7fB27idMyP3nOBebEVDNELgONnJ.gEd5yDMWNthGmGt3e47QF73S9A3gyeX
tW9CGtDmx8xdX3lufCGW1C8BdrBYvf.OXu3WfQVFSYgSgm4iAHax4CCCi4i.
DYjQeHgS.hMH4da.iR0K44.txVDuxVpUMDFHHh4MDEl72hgbugHRXnQXfWKs
U.WmcKD0mmq1CjyQFDIBLD0a9NfjwFDAnAFhHds5MgBh7IFnJ3NPYExKePBG
73UsHPB3br.e8QaDsHxgDd7wvHgGV3oW4G5HKKmj.lFXexhW.mZkfFWN46E3
LpfF7dtXbTLx1TAr6JJNqZG+vYMU.fYnCvZp4Epve5nhY++s9fX3PgKXeh7J
jq9E1mowC4hoi8pVYwAz+Tub8Beu57q+U1V6z+ZMGHAV0XLwbnVDDxAxcLHC
Jmv3.fYaX.wX45mP63GBgV.yKJ.djwRrf8PvRVWOAacPFp8j7R+DfM1PZuvg
vnHU5Sv2r.F7MU5SntLbfgn9BiKfqruWI1FMtpvcLZbUv8gCbfdAOT1nh9Dv
UUyGpS.C3VJ8Z+ZDNscoOQTJCGAR3EGKfyhK7RAiPFY.DNfKrlOwbyBmIQpO
hPAzmCuxQR.83vK3gFvjZ40LXf.FbmewRwCHDgGYPDxqLGa2lwAawP8ZmGRB
4BF60hgRBnuY9sfw1DriFUPDHfxQTuoQiKHJfYQ1qzriB3BQf7JQ6n.tRDHD
y6MWWnfH+1tenwFDAIgSWyOHBPCHDQFcxQdo8iB35HAGaMJBjW9PhBXhhPP+
rPhBmjMzqNy.Ib0z68Kemcw0BX9pAHexfdHK6HOgn.p8CfdOKxnBh.gyaDnz
qrFIgADh7gFAE7fo8C8J2iUx+fQEDEPtFyqs039VnCRbSWZUHAM8vNJq5.Ek
S183n1CJCsg4lGSyvGfk0zOhf8rdNXrEzAfsPfhlNutoSJzdhjP4M8YwcdAA
ssYDh3fdGmUcfWTMtD163H41Y7xCIiG3EiOjc4FwXSTzu9tCHb9Y5KDAGYPz
8mydD.QArzauuL6NfHVHoQvQ1JUT8t5aSIfCL7f5kmEZJT+7r.1XH7pSU.Ir
vYMh3u6LgBh7INbIXjAPn.t.b6CDEJZjWKjKFGPHBO1LXSPdq7GJHxq9Pb.W
3DnWaxEX.2DGPuJHd6wGevfHub6GGP6QdUi9UTRTffHl2PDNPPDwaHJTbMur
PhCotl+k2VnfHub6GEPcMjeEIIIb5ZHf2PTfl6G5kERT.m6GR7Zl1PCQ8qqQ
FazHbHkiv9FJBHf.TejHAJv.je98OlHQg7TZ.521zPvGaPT.Wzz6yON9cgDe
gHzHChfgrC.3GDABnEafWyp8nK8lpi9m3EK9jpXY8C0BLmMO9OxKZNh2OadR
V0WsOwyJTeJY88SsiDWL8ljR0zxUEUm8QeQTcDUc177YphrUI1SjnWZHCur9
LR5dG2PYwyUNGifuIck5U0GpRZD+p3UokaRthmNUkUNMOsBz9GQfIXHmQ3Zh
wDFkHAHymjlgLmoVlMXdExedMWnP+6u+w0zYy0unj0TJWt18.v+tJMM+y6MH
JPTnEB4Bn.Z9.fJoDZM.VywtJWCYIeUsdixZtI.PLTHf8Dq784oy1av2PLAL
CXSkHH0hIP.Txd7TX8u4+7x+eK4yzZ.
-----------end_max5_patcher-----------

Time Machine: Instant Replay

When you hit the big magenta button, Instant Replay immediately plays the audio and video from 7 seconds ago. A simple concept, which took a good deal of planning and experimenting to accomplish.

The video delay is quite simple; it’s pretty much a clone of what was discussed in class. The audio delay uses the same concept as the video — a buffer that gets continually overwritten frame by frame, looping to the beginning when the record head reaches the end. Due to the finicky aspects of how the record~, buffer~, and play~ objects work, careful timing of delayed bangs was required to play the buffer at the right point, and loop back to the beginning if the recording was split.

This was an experiment in audio buffers, as a precursor to some work on my masters thesis.


I’m not a big fan of the long garbled nonsense that is the compressed patch mucking up the blog feed, so here’s a pastebin of mine instead.

Assignment 2 — Frequencies Past

For this project, I wanted to create a piece which could deconstruct a sound and make it linger in a space after it ceased to exist.  The physical setup is simple; a microphone, 3 loudspeakers, and my Max patch in between.

FullSizeRenderAll elements of the system are arranged in a line extending away from the microphone.  As sound enters the system, sine waves at the most prominent frequencies are reproduced through the loudspeakers.  The most recent frequency is played through the nearest speaker, with the past two dominant tones being played through the next two in line.  Not only are frequencies preserved for a short time, but the physical distance between the loudspeakers adds level loss and delay to the signals coming out of them; the most basic form of signal processing.

Screen Shot 2015-09-23 at 2.34.59 AMI created a simple user interface for the system, only giving the operator three controls: On/Off, Master Level, and the threshold for a gate on the microphone input.  As for the patch itself, there are three main components, the first being the audio gate.  This controls the decay of the sounds as they are generated.  The second main part is the analysis to determine the fundamental frequency.

Screen Shot 2015-09-23 at 2.38.47 AM

This subpatch determines the FFT bin with the highest amplitude for each FFT window.  The bin index is then used to determine the frequency.  The last main component is the signal generation itself.

Screen Shot 2015-09-23 at 2.38.57 AMThe most critical component of this subpatch is the bucket object.  The bucket is what allow for the movement of the frequencies between speakers as new ones are received.  Below is an example of how the system responds to the spoken word.

 

Here is the patch itself.


----------begin_max5_patcher----------
4675.3oc6c0ziyhjj9b89q.YsmZUsWxOA1Cq1QqzrmFsR6NZuzaqRTFrKlWL
3AvU+Vyno9sOIYjfAa.mfwXb09PU1jfsy3IiHxLiux+92dZwqw+vOcgw+lwu
X7zS+8u8zSxlxa3I00OsXq6OVE5lJerEqh2t0OJawyv8x7+Qlr8+7aI9ouEG
5YrJNJKINzXcbhQ1a9FabyD+DpmOLHxeU79H4GBqZbma1p2Bh17Rh+pLny3P
VZ9rAiXm+BhYl+BQzlwup9LQ62FDE5mI6UHUiAdx9R7q+keFgvKN7nw6yJdV
SUqoYeD5Ke7E4M7O912x+2yWHL34m4mH5Y9oFqS7+q68iV8gwqeXrceXVvtv
ODTow50YFuFDYDD44+i7aliR4MjF727aDnHsCTTamkVrmMvVnJPE0pWPk4s.
p9O2mjHZ2HLdumeZVE7JH0nDG85KmCix..wjNXdGSqaAf7GKA.O2L2bTHMKN
w2y3M+D+dCCHhDFPrK.FX2DX3O9mKkFZlUnAx0xVRekC5T3pdQsnaA09+JFK
8L13G4mHzSVertA5DQkZDITzRV4nZunSGmaAY9G16EDKmJvHKtbJh3zUAggt
Btbwn7J2O5KSN1wQNbaYVAM5EOtyMQR++JGGJmwrb3Vbs3ocyBhipxZiXRxx
glSjXa9ID4ZAbJm6HGsx47aeZUtC7cIYaZ3qpQ7pZGqMbzrJQtJNLNQwvJGf
p9up+ViNhG4+ahtyI.tn66IllMGv6P3hJwCtkT4gkbEHXbOXlrIWSlo0gwhu
1Eki4Iack8adGZKHVUnHkxhdQQ3CvUh61bMwu3G49JPFlMRs3SoVUKvCk8wN
en6ItgwhWci1rv3WG.fjFF34mbNoGljWmhcjpHLkpOwzp77EhNntjb3RgPpM
HDJQRDspdWwviPQ19rc6ypBlCUfx1r+HOpGH+fP7VktBML6PtBT2XYmCcDd2
Lg3SgBK9hKkQSxj87PI6bB808YYhAqJjNLzs3OErx3+N5DLQ1750mg6Dwrjr
kTobJAjSQbTKJ2orRVTnGTQQq4RJwAi3OKdmE0wDm+FLCdW0uvVU7ggecXDh
NFyJXgzgI9nYLLW5j2sy69DN0xTRQhE7fr3cM+AoUtgswd9U6fMpFJ+uf7Eb
LhxE6pr.mzNjOv1XonArnNfIneRHsrANh9RHoAahbCyQgSdWcNG+DEPnPBAG
ZPn+69Io04CdZg6tcUZ9oJejb36u.i2VOW1TPDzjYYSI9uGT74Yks5lH.vLA
5sOAHpeXWngPMZmDsOP1UfFECjeq3K7.KO.yH4xRrf4EXl7CntXPeSX7pu66
UsSsHdmeTPzwL+k21yesqXu9uTUrEgW138W6txu0ObjPdAV5bRP9vg5Q1jD3
EGk2Ipg04MW7ykqVA1ETUhQ9DQt6Z3CKXgD3RK2LUPj6Se0MIenPI4hKtYVb
bX8aU94B8Wmot8tfnniPwr3cseyjfMu0wm80XwM2102s7NourOBt6KBA0rWR
ceuNZm4FFpjbq+0+C2n.whq7yBfg.rY4MAsWuktRr8kvZzKbm2a3NdBt3U9+
VfW1axenpLChGOXWASzhxQYufM9oY0aKycSZ8VNQrVzz9WURouj4ucmP0yQO
PMC9UUjrpNtZs24dZpqvK2PVYBtn8Y4aaOzELsUhenuapugez69gB9Ki0Iwa
k2AVtjbagU+9Zx1WsamCobLQH4dvZGUM+UqSfchA.vKp+INcE7MsJ9mJltPo
o4JAq+hXQV+pQ5GohgUARlJz8kJwvTgdh51NKJNyPLx+gumQbjgfIugog5MN
ST5THxopPVCGmctkvbsYpOBkkLteVtR1V2TEGK43PxU0xQGOas1.AmzNRfZF
IpzZayfCKf45CW+j.oVV8NsLiWq6I.PQd9hTaZaAstvmigQJROXr8IUmufbA
OIxz7brkTSmJrk1CmsjZ96X1RLgn3GuX9RL+qOeI6rrkXqprkmt2FsYKwreG
yVp1T9HvUhPNecYKEqQRO1QjCXKToQAGDNZ2wj239CTGYfpYATQAK1KM5zk.
UV7u5PExlMRPE69Fpdc+pu6mYPNGdgkJv.TiwG9JnosCWj9CWE1AbxfqUerJ
z+yy.VDFvOo7.Aavp94364YP0BqJV91H.Vnu7fkZQEWNVwbl8XkjFN6F6Wh3
btsUNlf.qJU7+1wDyV3eF2kqJVv8p3nHYesZWovrQiscRzAuHlRWjCwn2k.U
7QEpjNhcZPI32VOwLJECqcWCfpso6r5soylKfPgh4w.EruaQAkQuFCPv4ZBB
G7ZTtIhawcAR5K+9MiNow6SVUHSVrAdi5TZdbeFDU5Dse4fgSLP0dv2B777i
Nl31F3sKNHJKsvMpPDFvHK4xEAvfPiU0P8e4fzb20.NNRK1f9Rt4lQSKxM29
kZQtW+9b9D4Z0mkVQ3nmTqwn7sHw.yAIGipe8DODkuFO84HG.0hEB5RNPLaI
RxRVugoldw8gkb.zKQEdgXBPtTSYDMntdpoVplTKan7xDIuKBBiREmr7paAk
hzfRsXCjRUAQNDNgHHRTkWcKnTrNT5.kXQVf+MACTfYlkWMwTpbnRmwT9.kU
wlvF9PR11BESxKmqjZtMWGzBC.REYCdePEz34WM0TJuOT5PFTg8shrfvbEVP
j7pIlRaXnpE1W7.oTXTDq18I+vUSsJIRuVyz7XgdbcWKNenLhrkbksTHPr0g
rf0BXdCFhzdmGrwhZK1KxblZaXGJ8mZAaafTT6MXsObc4joCbMsH4JBrf3KC
VxW9EyU5rgYS6CchfQzhoLmyinV7QgRUSYdCnzl1EcKLuVZx7d86zXsE3rmM
8Yptazm6LR8YkyKJh77E4Aer2KPfV+haVVRvq6y.KqUMT56U.AuIL9U2PU39
VFpFcEcvGBg3ucn+NN45Ph+J+f28+zXavpympCrhLBpuIjFukLc.06LcXbSz
i0qyRy1WIeeZH.8X1pLxV5OWV+yuPl03Q7eASoCfoBAo.NmBEBAayGYzwiL5
3QFcLr3HXW72EpzS2IXlRJy831ipGmJ0fAGMBqGRKwnn4LMEAV4lHXyiCOWj
U.YZMhI81G2bvAVgynFMXMjXeSCrIlb7y73SmeNmDaB3F7ByZv3l8nFVXclZ
jSUb0sdsexAIQi+iT2s6Ryk0r0hWDCSGhrwCNX6rFUlQHJMpm++SXrqnX0nl
WXrqvnWmPeZ9D2Ff8UwZCTsv8vX2cArfsl9ZJe5pA4VBJj7+bUJ0ANWK+po1
X8ZZqdmARmXvMDDvDZllkWcCnSSMoyA4QMmJzIy4VQlZGDGCz9uJJS4bIhc4
USLcxz0A+yGCQoqJEF6gcnFpoXR+HMHZcbWEKNjJJwAAV1YLCkYCVhgrXDp.
OOrAyCav7vFLOrAywE2slKvacWYxvDVy03M8Wg9QYsUqErowYCfWm890wdn+
W0wDDbZousU4HJkN7JSv3lWLGJOUWevxKcWtJJeMszEj7PbxvK5.cXxF5vfp
mqXjA00SIBJ9o8f7uTG.DLGAe3RuTqQkWa7kL0xbCftLBx5Rs1.9tyZCTKcC
amYje000xATm4SeV2sGyHyl9LS2XLjgeruwAWqF2mUoPj0QvKfnj7WNsxOcd
G3id3.+N17HGAU4DXSjO183icO9X2iWbwC7Ojk4t56FtQdF+OGUHFS++iZsb
.hOWEOgT0shmV480egqyTe8qBns5UM9VgCHaDfrPvViHenE2INtEchwcA7a8
SSc232HX8ufznTfUDeHPhxQGt68wzYLL0cgD5rUWRUzH6vWdgUeNzcPkDRWq
d0yhkFXGBD3y5KvhX3wwfXiRkT65XtryHSipKS2uggh.O4Rk1QSYcTb5LOjX
x1OuXv0lcgpIn3ESGO7gvmZRM76+d9x6LQWJXiXfe8QCFrISIm7naqyqixZE
1hArc35pIjeGnrVPPe1G6ICGJZngrrbr0UonLMwg4GabhxOJ+qcT9o19F2Z4
kUUhXl2clcW6R.yrwXvHcS.O57oOqagmgvmMoHOFoouMP74CLqM2Lc9zmo2g
ry55qNx7wGRDRejAmI8YcU0gQyG+Kpced9jS2Tc0OyLe3ewKHEgOi+EKNKuU
GWmzd6eQJ6g+E6v+hNfgAoTxC+K9v+hO7u3U2+hC16hpjG9N26h8y55+t0iY
ObBw00ID6295Q1MroIhNC1JVWPcEYswxRgR.KTdSXWfCLudNln3.AFqmyJtB
1tbzh6.a6CGjJeQi6fqjShsvijiGb9x63g4RHM3bGDRC2CSlQLe3Q8qlG0In
GdTe57nN9gG0uZdTm9vi5ioG0IrGdT+.XX+vi5ZY+Bx8247iyWXmPRlONZhb
GF5B5hxymzED6nYX.PLmObFl2gby55BR77g2fnsVi4iHHQ2SG.x7Q6LwoO37
7H7gH5VrwHr6uYTnjGgAvfCCfD++pqXwpejFjpQ0BWUiprY8NX.vWdMpB1w6
W8xTEANruX44v2i.A3Qf.7HP.Fpm.PmYWwvweKApzoWRVKwuC7DPGXUlwqBN
g9TDwIVC2Nd1WEvZZ8JZv47wjrJjRUkxQ4TlCyGS12skrq.sD9nX7kBQj6VH
Zmu62OufmRKExV2zGtMfxbTKC82xhY1OeVm7BfFVomZ3bWH1cL2k+209vxPg
WVW7YkAYt6UgNPr8+s.8OBCPNVWXHEgvip.YwLgEuNk7Z9da76kiqzoLV1xB
HPWmRIws4feXj7eEx4qs+qf0Swf8RdA9uBe+UHFQ5l3ej4SgXLWyldmUEr4U
eVGbFOivYcShN77waPHcs3Ohb+0mwC9HgG1oHScjkYCyJHmjDgvkWMwGoEXS
cKnpynjNVaYB66OuyflQdtS2hsKdnmGQDntYA6IQcEQISPvPjrL8xD5mPsyH
8WZeF7Le7.OVWYB7ihL7479WXv69K23FDUrGsEu6d3W+z6t5M2nH+vp6Dcgf
7iiVEGBtE6WLLW5fYTGAzujvoVlb46nHjk3cnJNFrp6opUa0qT1hIHHMcp5l
n5wYpcgmJVD+teRd0rudeggcnn7t.qryX5XaRbNpyzPYT1hIcsIUczQAGzix
WZ14ljFHrVb5Ix9fOUOMfUQUbGaEpAxOgp+qZ+nxNV3mIqoet42U6nHHLHsh
SUECxCYHFjTJEQ5PX4c2v89wqO0GrGvmv3nMsyaV6QSeKN4fyI+StohFM9+h
C2u0uoGu.gLa3daECv426mspjSY0tuqTBi23cChBxBbCOcrsomB.2e1ZosoC
i4bPyUkGcu3QKUFP+VUUU2fiI8Ru+KkPFv4jNiOGOmzERudmizQvAYC1BRRe
d+KBBzlIcySI8wix9oOKsPdmm86H0woY2TE9TphXMGGPyb2IzTjW6e6h5wVv
nH3wWq9WWKPWNwK5oqhEywtJaTAfeRnVl04.OjOQHH42X8db219hI8p1zebn
ZO2UeZXYXW5v+lG0gyzFX7la0MoSZfzuIBxmevDaKWH0oN45rClL6QJjrF.8
B9kJNcU7tROGz1REg.hhBTHW4SOJo6k0wIffsMrQwCNena3QmE0Q6KrEFuIO
N6p9PskXh8DFqmemUlZKKdWWBC.b.JBIjdqFfOFm2jiJ45lj8aAQdw+14oZv
aKmSueCTM8FQ0snaPrEnO6TkWwZW.5lZ0+I5toSxuyUrGTsTMPPxfR0VUHkN
yF9brk6qxAN2fw1P9IZeNbQCMCkg94hj38QdfoF3Lcm1P0RQ8fn3GvMZiJTG
Or2jEaRb8PEaSiXUrOMjC2zxN+cTaNVtFuJzU9GBW7gvNlhmVtkt7cJSg2IZ
Bc792i2I1lUQvktj3TYrT9T0c2ELzdr4dTCvmZZpZmAwschISq8PmXdmSMsy
IrZ51eH0JCdsYlrZIiPC8miLkIkaKOgeQTHzd4NKssZ5ZjbFcNbhNIu5POYz
HQaSMHQaxYHwot+fmr9iUsp9Zad7neb.bFnrgcHdjjWbEFds3Z.m7dx.ClFC
obHE7+pWvsuNzBRCZwhOYrFHaMXMjZqPSW+wTm9yDI5Xpg17iT4e06OHc5On
oq+XpS+Yh3m0Y1ti5zW0oBr0s+LMiWbcFuXnICezZ0ILqIq+vzo+fmtkRT+j
IsM74bx6GM4mkXOSRqeC9phZAlcgitJS4wzYJOzDNDqyxInrIq+bzOUKwBm0
joh.qMK2zfO5Lbg52p+TlVzjCG2rzxqtFr+ZshF64E6OY5DGoWqgWDTbXTCu
xqtBCu5nbiNz0qBFi3nL8MumbTF9dT18dZl81dV8dbF8J9k+Ge6eB7OWZNA
-----------end_max5_patcher-----------