All posts by Kaleb C

Soundscaping (v2) — Kaleb Crawford & Ben Snell

For our final project, we continued exploring interactions with spatialized audio in hopes of developing new paradigms for thinking about space, sound, and the human body.

Using a Kinect, we developed a system that simultaneously records the sounds and gestures of a user. An individual can start a recording at any point in space, then traverse a path with a specific body part (here, the right hand). This path is recorded in step with the audio, which allows us to trace back the precise location at which a sound was recorded. As soon as the user ends a recording, it begins to loop over both time and space, following the path the recording took. Audio is rendered at the position of another body part (here, again the right hand), which allows the user to “play” space.

In developing this tool, we discovered how important it is to have a frame of reference to “sculpt” spatialized audio. Here, we used a wooden box, on the top of which we created forms. In situations of larger scale, richer environments would likely be needed to keep track of audio.

Questions we hope to continue exploring include:

  • How does audition influence proprioception and vice versa?
  • How can the realm of traditional media (i.e. sculpture) inform the dimensionalization of audio?

Developed in OpenFrameworks and Max, with the help of Synapse to read Kinect data.

All source code including max patches available online at: https://github.com/bensnell/Soundscaping_v2

Black MIDI – Synesthetic AudioVisual Insanity

So, I just recently stumbled on the “Black MIDI” subculture on youtube, which is essentially a music sub-genre that consists of fast paced anime/gaming style songs with literally millions of notes and instruments playing hundreds of MIDI notes simultaneously on a digital visualization application in a crazy fast borderline seizure inducing frenzy of audio-visual madness.

It’s honestly terrifying but fascinating and I thought I’d share.

This one is a bit more abstract in an audio sense and focuses more on visuals

There’s a million more videos on youtube if you just search “Black MIDI”

Project 5 – Facebook Melodies

So, as I described in class, my patch takes keyboard input and mouse position and translates them into binaural/surround-sound, spatialized melodies. The audio sample is the Facebook notification noise, pitch-bent and then fed into a granular synthesis system. As the user types, the ASCII code is converted into 1 of 5 different “notes” which change the pitch of the synthesizer. The mouse X/Y position moves the sound around in space using the HOA plugin.

Here’s the code: (lots of dead code randomly thrown in, sorry)

<pre><code> ———-begin_max5_patcher———- 7824.3oc68j1iiibcedleEBB4SI8PW2GFFF1wFIwHXQLhyWB1XzfsDa0bW0j xTTyryZ342dpp3UQ0RjUQQRodgZra2ZJdn2U8p2U8p+9G+vxmR+on8KW7qW7 8K9vG96e7CevLjdfOT9u+vxWC+oUaC2atskuFsee3lnkOTbs7neJ2LNLfwV. qFde9W2FYFuZjjCuFmrMJ27VPMCldHuZTX4nECk+0cQE.1xkK9qkWZWX9pWh S17XVzp7hqBgXd.h9vBHffBXXNBveXAED.dXABE.pe130F.J8oe3STxR8X+i O9Q8udXDP8qAhCf.EhC.LnF4wth7DvPP97zMa1F4HZB8CMiSx6gEKXFVLWxB XBt5SHhAEImFEw7k0usrvWixixdLJI7oBXFL.zOI5KpW7aX8aSCWqEKVv.fo g1ziHffDPfLFh8vBAxHA.I5OS6RB.MHIfm2lpfYOwxmSydMz.srSh2nyh2Or X4SgIa7.+Yr.LhHj8MA.JmIoiedav9swqhtP8hcRi5g9PflINRAOPJgTnhNQ 4cQbjKGO7OO50coKfINh8jIRqg.i0ZMXHzCKXvNWWXLQ9Wxh1+xBD3przPEe GRq0IzMpiFyUDQWAbFgDAHAUxTnMlpVXfBj.rBgkAzNP6goK7VyT.sjtB2Es QcLoSNNTNtnNFeMPckjtjhXTje3tXTw8qxbbZfRyFlw7RdGxGSDGbcj2YJzU 8CF5GOmMtn9UQdWicZTm4GpOnU1d5PddZxzXWa+11Qo05z.LMhxEv9L7GAwu +PTjxoFFiC8DSQu+vT.XPXJ7cGlxsTP4AhBd2gnDwPPTf7cGhZq20CDULhdT jofZkujKPKvKHKnNRHNse2rN8o73+uSI.tZgvByPPLP.GxI5XPIDcGAhAsVr BGdJJ6hj.tr.NXirHp4yHQuwafimo.NreU31nEf.kHZfRP4xDQFl8IVTHnnP 4.T6HJpSJDh8KjHRgwEdYKP0yD5Q3.NWwpbez1EfoIPTFxReJJpHMDY.VPTl 2ozjx5lz7KMoBnPg5XovAoB5XKUbCRVPbhujk4RS5gjcgq9QspTPvzrdihen nrOT8AGnSPAQqTQ4sGu64MfA4i+pzWeMJI+sjh8QKH+eWlcWfthcEH.BkXfZ cTBK.SgTNoNJ0fyDk5wLL05j3TnAq3BuDudcThMx37rkj78w+r4Ng3.vHaBJ VYrsNTW.s0G7.IhxkJgAVwjH74L9XoEzknlyXtzuOKNb6nFBLkco9F12Kid0 8TFgT6pIipsCgxBnJ60kZ8KrtHVH37Pr1kt0+0hmPpElJqkr3PiyMZhEA0Ew hvmQhE7FhZgjbcjWU130hZUtz0YnVbz3RsNnzUen5UtM7onsq1Fu5GGfVq1j DbEnmG8ZYggr72uamxsh+ThZ01jvsK9Oi95SogYqW7qV7+joVkbW3Z85XOn+ Uws9cw+XzWW7e7m9iK9iYweV6wVqK20aZAxmaF6yMSZ3pmLYht3sKjAq0qXw 6U1q00Jx7Q2ZtyMYwVp3FXlBGUSsrVwhP6blBabmoblU8eId4Dr59YM2aa79 7dktroWPfTupk.nLFhH5hfIwiKA6ZVpORANfB.PgNmFp0vETrTawa2wYSJlq 4Wo6hRtBY8QhEFACsKRXIrlrf6tVN3i37k8Ouaa3W+1he21zzcSUEsrOdiR6 sSNOZSRH5XwQIHt7gExNIIbRMfG94n0OpFS8FeLLOOK9oC4E0B4GpoLJZU39 3U4GRh0fyudAgTNuWOYa61zurYa5SgaMU5hkiNkdNmjuJMSCxwoIst5qoqKH ZlW+xpgSyh2DqH.aiR1j+R4JNR0zAT.Uh0081xb0h76qILMORMDn7kJPp+AU cK6hUDuy.H+sCgaiy+5Ifk7X0bf7rH0yV.HJ5o4RFwIeEp1DFm7sowQ5FYl9 TtfT9WVYlq.qVDBAj3xjkqT3RNiylMo39WvwhgHPADEsAqmNob9tZ5T2AjgM aF1rOxr3qBdtFETESJBfrh5LjxMelSDEl.1Qk1NpEYRVj1N64G0oE1jbLpi6 zhW7fxCezOuNb02tHjriHMwQJa2Abf15J8BmT.SGooBqQ0+9j7v2cYpTsNQ. WPE5BgEKf5Yx5I08TwzKmfhhF5cQQqMf84vUQ1bxV1ciFW+SPv5EDn5XzifP cwIzc4SCk7YwCkF5HBzPIunnSNmzV.ol1p7nIPsdBfpLYUJ6j1xjyLsM31VD UYmugLpmBq9iN4pHcsNx6VDkIlEx3+x2llUjJsoq6x6lpILTo1lejnVMWmk+ HjMptDsX0KgIIQa+uRhlpziXaypTHpKj8dTQwXiHd9O+sESW0N5BqlZY2tro X9I8nJg9KIZ.nXoJjzOZ.YDoAou9SAqRec2kMomzuibMepJrYl+5p5.kwOZ5 Cmnrtii6j9PASxhJWg8BFFRpWnfILwCACTDCdOUdyPv+cYQJ+wtHj7rRAUu6 5Xx2dftIA7ZeXYRZs4bHPQ5yOW5xq8g07M835v7vpsDaSjf9PU0m0fRpwZtW cvY9MwIeNba75eaYd8MN42jpekw3HLAosBRe2lcbD9z2JPuJV0MosI5T2jtd ZAM2F5LuKn8MoML3zeg.j0qhouVU41UwJfHSNuptIcMpnlqpv2hapFMQsfpy bWRl8cQvm9trPwVD2S7sxb7FAW66qPw7Y4UkgYSMcr3SWTrk9bXVswe62YGB A0CE+p5F0hy0Vrpl1VMHndvaiRnx1NXpzr0WL0IR2ELDalpWncKRyew4RScL cPfBj0J8nJCCT58I5xwlH5dgO3R62YgdM6.e+b71nOGksuLhwUp7VFtam0vs 0P9Z3OjZdQ7ZEjJrtXHP8PYQeNt54o0iFlovrbEZcHqfx8ShJlWY.yyRNDa. kp4GUfTCwvHLX9EiX9CQXETWEucy1zU+Xz5Vw.WmSm3Dix+j7v2Dh70QOGdX a9im1Iu1W+HGCaewi7Bq5V1jEuNMwjXIa5rd3puNsIvlkvn1Hi4NRB2chGtH sFm4h6UH4g8OEloYCkSEpSVPdZ511Wp941F8bd4k2Eqb6oMULOc24uXV7lW5 3YeJUcwW65catx9GOjTb0GUyGyeTmBm12W31skSPa+5+oPkdsv7HcRMLnKn9 hEpCdY+przsaaguEW4ym3JqURvqh9R75hjz.rEFT2d7tJgnk0b40wah1m2dr 7vM6aOxazanF5vSkyPeTmimsJrn8MzpEdXOczVUVqw6RkVegI4Lf44VUnivi bdMf8nE77ZBMyQJrX3swG4DcAgifwSDljlDd8gpUIlJRL19xuIJeCkterFoY je.K1w4PfZkatDnKjg25LxYaNCy.WokoRm0nnyZXzvXIGYjjeLDTmLjisipm IJXV.oju7Vqndaegna1RquwyXp0XMYxdW.cLaCeFl1Ln8ZbXNUyZ7h6TWku2 .rm14u7nxSSYKT7NkgDgqiV7OA8bMEzUaMEEOohYH6WElX9Tg4Bw9cAgtRr2 hRyj8QooyGgt.it.ifNYD+OawMUjECBtlXfMBhXv4IFLjMbTsaNLv2InCMtQ rMN4b1OZfL80OMAZe5grUUb3xEIVzF9T1CmGmT6T022LC4narwfGaRy538ZU TqcWGkufL0QPVScuQ.YsgqNAyxaFPF5rjA+1AlEu+DMNA46zvLcj.45ZBzup pzK2jKJwxRmfq0v2kOyMNVO7JVrq7.BuhY81jkGJSWkJHPcZtHclkGxnmM3q HEfIqCDrGTfwLWveM74LW2qazQY2C7lTiViiqR2VDeUcvOEPHW2+y.AXNhRj 1eBZQX5grxUetrbJj3N2bgzQdWMct8f55nUgecgI5cWvl1.FPkTnf2cMXXEG 3SsGbMwUhUDNVY2zTLtImEbAqoIDdhm9nnOCOwlSjOSz53me9fI97WWRMBWj GQrujZ6983od59I0Xv7PpeIdyKKdNK5ucHJY0WWrN70cwM6C4qEcGHJB.Axa BOPVS3O4i6fPtXdn7FB1UVUByPgXbuUkvr5mo7gPkgzQdKiUks6QnpWNKQqH HX.Ywd03sRWcj1zeLI8oAsP4SaZ+XOX8KnGSLfflIFDzvXYjwNU1yFSCVTaF uyXZbA+RYZD76WdFC+djmwHWJOCQe2xyJsX58lxQKy0FrxwQmo0tUyYWFU+g muhMftV6pBYcUu2SUPQmqxfZ+me9aKHNusevWdABedOiOYyhF0zmSzEHTYAh R6teJQG0MMvsMIhiLccWJ2OJjXJJiZP.5Fe+iAv0xSDDrdSyJ5tlqouG1iSS DIiZ1bhR8AR.QYhgxYSNr+cyzL4O9u4SAAe52NEDqt1gOrhP5xMjjFgHrrqN fFjAmGZx2CBBVL6DEHjUHmX1hKrJ4DJoKZxL0Pp1uKJZcSR0GTe1YB0CIZ17 9rtOErF4YUcU44JJ1E2tCbh.dolWYQHYnltfPmMUjN2rkyT+QvzjOtoDJszz SUqMpmASpBH640zilKYRCAa4jruGlAAU6kQsTO1oXJBOehomwjjmN77yQYea wlrv3jut3OF9ucH4GCBiedwmfKlMi85umr1K82tqXvz8UBAWX540rN2OlXxr X4mg7V17d91BTI4dtHu3A3bxoymIBKQ5irLP.ifgZGcAAbfzzSz5IBCTy1Ak o8cgortrJKw5CaiN0+fmGaHZW.j2.ZqwX1IMgf1YGtQLOTqB4Yc6+4Vhj0pk IYQx51YF1bYjpdy9caIhYuE9r1oZrNO6h3ylUp6R2+orvj2s1Dzpa1vn0z2d ZgWxa.iWS2GqCuqh5uN80DcLKtobuxlvZI3B6tGXwHykjqd0jSrud0ah7SIK CeGHL2Z8Hm6GczquItVQuj9dqmM0hna0SM6NdlicQf4PaEK38FksksB1T1Nc WfBmEJal+8wHvD0baITg9Lt.gH5DC1oo5iZIclu.bcZ3wLALfP.XlT26pf0m ZPHR2GDJiJt+zE1wZ58fAxGp.jyMGWCTXeGqkb96uCFPLJ.V1CJgXXfn7buo 6tyHeLOtSVGsM7qZknSTiTs+XmXKxacZP0cnSDiYmZJb8pIuaD6PxVYRT.kv wLcq7VIYffbprut5s.9dqotyIbCCWeD+XglcKyKPyjAaYKxSeMb20XgOnvbJ sq6YgbHUSd5IbKhQs6E5Cd6ciKjPZ71Gg3MmvWctptXLK0hcg+3hhsH0B3hU gY4Q6iCSzFlaabtiafiQwJPKZRyo4Er6tHsXL27N0mPjPy+8ImKMfw7LhTox KfAUl8Q0mbJEG9abTUKA6rzA5DQG9jgVbMNqLUF9xEL.D5EcXLaoi2TmycDI nVtfCzjCg9L1s6S6NAdT8DRgS6uFNAYi6Xrt4jSsJ3gyY.7jT1Uno245N29D Ci.BgjhUSwRrVwJTaTUYcwBOi60hI7L4ZzN8sJOVNJOmqTeg+2Q0+q3j+7Kg J40Q3fsph7QfxZxWYuT5rgmXzO5ZGwC.fiqNYJFPLE07a+TOoRT2co0TFFGW GahtOz.P0Q9ca5pvs0MsNe8Tsp07UEx23nuXZLawUmYK0SUd9YcORsUOvqFv JZ4cqyB2zzJypnRlCMt7WxROr4E6weSWQq8E97auvSapNTapGIMacq9kZa1W 26cpvrMUS.9clWr09UuKaoY5cuFEPzUSGFIq2IamT9sN0G0y8eIML3kns6TP zi3.E2P8UMlG5XpWOZcP5t73W+1BW6lz7QQsJ+hpY3gWQwUbFJgUO8ojybNE yr4IhxkbCkSPJdwBlmV.99laPjbm4F3ojaXmGqCHg…VmwOMQr4Pd5NcCkX x10ljtxWkiqghnATQQio0NR1zh14yYnubGRZUVz97zrni6iF+gmK+l0mPHMs zGS9.KWLf1LrRP+QsxMXIh8XgywOZ02qezHFUzVQTZNM+2mTVlRIPlo7aDRN mKJaxplEZPTgnXSB81OYbrcYq2Ip7wZ+q2LxIdR7feRxfeR5feR1feR9feRw feR4feRHX3OJb3O5vEifCWNBNbAI3vkjfCWTBNbYI3vElfCWZBMboIzvklPC WZBMboIzvklPCWZBMboIzvklPCWZBMboI7vklvCWZBeAKwMboI7vklvCWZBO boI7vklvCWZBOboIxvklHCWZhLboIxEXwzvklHCWZhLboIxvklHCWZhLboI5 vklnCWZhNboI5vklnWfA3CWZhNboI5vklnCWZhNboI1vklXCWZhMboI1vklX dKM83lrzC6dietlQKbys7NO9cV+FptUj62J18ak39sRc+VYteqb2uUg62pz8 aszKR2tWO3WPOXXPO3XPOXYPO3YPOXZPO3ZPOXaPO3aHO3aHelm4AeC4AeC4 AeC4AeC4AeC4AeC4AeC4AeC6AeC6AeC6iBRO3aXO3aXO3aXO3aXO3aXO3aXO 3aDO3aDO3aDO3aDeVYyC9FwC9FwC9FwC9FwC9FwC9F0C9F0C9F0C9F0C9F0G SR7fuQ8fuQ8fuQ8fuQ8fuw7fuw7fuw7fuw7fuw5iu0jMnhFfPQ5irOV4p1Fj kG6vsN+7JZjGUkY.x9BlyVxl21va755rxZUWp14GrIAViY0G8yook6LNge6m 8VGNwu4PJ1p7Sf0tiT8KWRQKWVWzrXP4w+w45FPCaauAa009qaW+cz39+b31 CQoO+1i9wlW+1zjMspmhhTr+83+Zyw4Xycu+kzrb2u8JpO9DWKNw9TK7i1GU A0mOAZInBrUeJHFcOQn2SD58DgdOQn2SD58DgdOQn2SD58DgdOQn2SD58Dgd OQn2SD58DgdOQn2SD58DgdOQn2SD58DgdOQn2SD58DgdOQn+BJQni2FI8WsP Bbt+Y3Y6zp+1lg4.zprWja2SwHc1VYviYak4WorCjb8n.bN4zTfNajV3Qsgx 3UmCw6toj9vHDVggRptEZQDj9NWlvvQsaJ4YihAMhc2iV3OCo3vDHPeBmzY2 jBIe20pzDxZIYcafiBX5MSb2sJMHdlZUZpWcVpxb0qTiCzl3n6rKJhiNW7TQ 2m1Vi3b.yb7hJG3RDOn8zsVN6ebk5XJamRYGd2SQZsLf4NVtMNIpr4aTQsLe e5waSyJCEUAvqecRQqF0wZEwJNo9nar7l3jV2TSaFpRA3538Zo20mW70Y3ge iAOXcbE5Cdn8.OGWZQf.tPfLt6EP3.p3nSfyWiWuKUI+TxTwPnQYpoIjRP5t spPGeHHE263LifUwvb3aGtA0FWZVe7PDrEgcx4g8AOP.e9DpbPlRe7QOWzGG HODvrBN8QcP8vqNZBDDHDAbpQOKHfg4HcKaFpM8Dc1Qk.byfpIKlWPyfSvDG gKJigylXpf4.3HluoMBpKviFnItKZPoJCUq5skDoVGpYUXFPV2.3aFeJX5DW wJr6XEQ2b3p5TkVXEUsDv7fUtrtofNexNtrFfX9rqP.bYp9LNW2Evgg8SsKl vLRalC+ZHJfAIBs1TF0LrNsJMCOABgbWVYiy8Co3DX.qpivyXFO60I8gIAAx pVhe83SAV4BuRfmMQGCAr2o5dthsh9VSMQBh1XUoNUJbJyLtt2a2L9TPkcwQ jilEOoTYWVLVNibcpCb84DdP2XzGvTnQk.30qeyHz.3IznVO7DLqf4hFU17s LJyEcgz4aVJi4DWmMe.jK1LOifCYJlUfvvF6LtFyJbw3RFx8fDABPOX8K6PC MxPMzEnF5JT2p.1lPnF4BTi7JfbVf9TA0XWfZ7sFsl3BTSt0n0TWfZ5sFsl4 BTytkn0tX0EUdqo4C4R.Xk2ZZ9PNn4y.0naMIDrKPM9ViVSbApI2ZzZpKPM8 ViVybApuoz7MIt2Ig0m2TLh7zFxJmNCYoN4N04BXFb7gGtqlnx7HYPPYUK0u 47AAhvbSBdZFbJnuNEE5YyaLpSqdi6gc29XaAwIlx.8DeZZlHRgt3707koA5 jD3GDDaEJc1oCkNa5BktKgQv2jxpqKN8TNgZ9HjgLGAL0IZsYvI.aHtnmCOe gwhvusBdIwoU2lw3pQnNCPySQJPbplRnmKNDvykvrlv6xUKDAPPHzjoCb.Bz y3Tg9TJ2b7cBYMulpgmfoQXWDamOMuXWjZQxYSFAScEdlI5C91RqmKfC0yEU vBZ.RPEBotd5IABJAw0GQyVohtY7oXNgKHE7RPJrY9rtXpscWnY7qDRAk7K. qX7.lfyD3GZEM+lwuVXESbIXEM.qT8pcqvJwc0Ce0vIvEfSTk+QBHQRLFepF VRsG8ZgS8FjwNmSgpUTXancy3WKr5Bz9ofakcB.ozbvJRpk9ZFeBPJjK4GFO ek0DxESB3dJ5vkxl81BBG.wDndKs2pxfpGeJnxLGhDLlMuT49BSCd9LDDQc1 3b3.MNmQBfBNWuKgUK7UuJby3SAa2Mk6n4iNibIVGn4yuUDTdqAPhaM.heqA PraM.hdqAPNseZPfYDhPNsCejyHDAcBhDyHD4jtQ37s8IT174DDMi1M.D2Zx Q.lCoP83Yj8GpaDMPfwXFS2raPAX.faxHhxbAtxCJg8vSgkC.lC4yFA8NB9J WIznE9HzByzFHygyCdg6Eu7LdK57CpQKwQnEDLmnEpWzxS23EJm.0nEsMZIv AT..naVRy.V06N6C3q2X5stGtXiBXgUT9bhU8pCC3YXjnrSpv.CKvJ1jiUNE wu4SurK4Ga1fFnS6Rc1bBPNld14IwGPtSVrBlOKMbxqGNa1JrEnSajBHcFoP L21BfyH.4zjr4DfbJrRL97MOywsSAeFoQtErdOWMzpJW3EIuSGrMAzX7rtaq UO5DrVHzoMJAjx803YgIrgGgTPJpN+CSKVglh5TpIkP5c1K7za32Iq9EONyV dF6lajJZyoHhwmuv8bbt0NilXwLBPtrVEg4o6QVpSD7pZoAVj5Lp1Yv5gmBl tS3Dz25gvFoXPStzQlVAjzJWFUiOInkKqhSndp6zVIoEuxFqlTdEeJ3Usvpq Cyh47p2PepcUxaWRqnmmgli0ucDq3iCVwAlk0m70uotmjSxvRxo.KqqzPLPo HAz831UfHEOKUfHjRblJfGHU.xZp2RIp2wsoBXRSlgmTp.ZBVOzVsi.vpKlD 6UDaFexPK3Hu1gsnYKz5jn6jfVvovxaZo+Dl8NDtob5rs8FOgUS2wUe84PK5 LZlnaaECxLBQt3dxLFRCmpqd17kqanagOX9fGmJfrii24zBQN0LKmO3woPqB QLeacXf.pNeGD8twinChfRGloe4ZNekOy3Pc8Bq9gidvNEJMCOEJ9ftjWK3L loenS5YfyYvbcYIOe6QX1cbMLRYAFiqK8R6VDV8vSAeGvchuOiZq.NMWDNiZ qbwl.husUPDswZarnwWD6Bzrd7Igy6RhroW.VgXAzSgU0iesvpic6zOzhAOM ypd7qGZQt.zR2HUOEZUO9TfViggaGW2Knx8.OwzcvM0kzaGqWjonozGta2mi x1WBQF7X4qg+PQf04OX9mwIE+SC7rLK5ywU2uoi6uLLa0Kw4QqxOjUzy9+Ic iv07noqixRNDabh+iZJ3GK6s+G0H7SBes3Q+8GVGm9WxCyOr+wuKJ4PQ6+WQ 4dN7v171T6m17b71s0oA3C0W4CKqZ9+kII3gxga2BajDiv.H.CwbyIrV.V8A 84MTsjX4y.qdHBkHAl9dCgoSuf4S5lDO1zGKN5wPMeW.nr3a.HE.RwmTC0N8 DJZYxlhC9.j9nXnZzcYo6RypjaTOpr99OjmtIKbcbTRdMGtfEWPtKN9JTW83 iTgkupHnwUOisvcMy3GLh4QY..b4oeUu90hO65a70u9oneNb8ptXqQaidU8k zhWQ.Hg4bsKfPPXRACPYxftYiZmdmVOjTwgMGBbAJdp4VAAPHhXZhzVOzSaZ mJIBEXNW7Bj.JpHSRJSTIUM5nQgz1lvcR5f93wv.XOFmnmiFcb2d4M8MEWlP TKrbl4DNJm1dVgfZN1XzzNDhT7IL.PPm5oPV8+E3o5ZMi2rfSwfK66LR0ObR 0mjGklvmSSxq3UJ0zeWZR3pzkiKu+Svt39gqV0dRv4oWmbFCSJPRi5INDSMm 6bpUHjXSex25Y2qd3UZZZ64.PJSXjCz6SMTgbPgluiIS6i+4npbkaco4T5E1 uDUa0whZc2hxy0C8mDD7IEymLk3skRa2QmDBo4fGUsNC.TrhCUHont0co.KZ wRQRJkneAuQX4HQ6+hwjkE+A0J0K9yYisLNB.o.NBEdWT+tn93JpqrG.V.Xp OA3xpOIwWtpbeMqo3bs5ec6AeUpqs8jyLmfnArZSKk5gfio4FE.3+dVTTh2P nQ.lh0+XrfhoEoFef6+MZ61zu3MzIPTyAUsdisKLFqo79gRncN6EouI.PLRH PtxuN+LPFdtW0WzdRs30zjz86BWE4KwvI6vNoRTt.HgESmTyAK7KRqkfczgd 06FqRcwNu2nrT4HHnp1wXEdLnDqD5i95oz.0VXq56STzYUEhRMbXJDejB62t xu1amBsGBp4rsU8IDBhlQKa+xqlE7oHP3cI26Rt2pRtpm4e7w+ePETYh3 ———–end_max5_patcher———– </code></pre>

 

Ambisonics – Ableton 4D ft. Stimming

Since we were on the topic of ambisonics in class, talking about the different varieties of surround sound and what not, I thought I’d share an interesting project that Ableton did about a year ago in collaboration with a hardware company that makes this enormous room-sized speaker setup and minimalist/house artist Stimming. Pretty neat stuff.

And if you liked what you heard, here’s his entire set mixed down to binaural on Soundcloud:

Project 4 – Spectral Processing (sort of)

For this project, I was trying to (re)create an audio-reactive visualization that uses frequency bands from an audio input, and then maps that to lights as output. I did a similar project for a class where a group and I programmed light shows for the Randy Pausch bridge, but we couldn’t figure out a way to make that process work in real-time. All the audio had to be analyzed and encoded before-hand, then fed into a program that converted the data to DMX so it could be interpreted by the bridge.

That being said, I really wanted to create a system that worked with similar effects, but could react to a live performance, for example, a singers voice. This would allow her to—by singing—control the visual appearance of the room she was performing in.

So I wrangled with the media lab lights (and encountered some “meal-sized” bugs along the way) but ultimately ended up with a system that allows me to map R,G,B values that correspond to frequency band intensities to different sets of lights.

Here’s a video of the system in action (with a music file as input):

To be honest is looks a lot better in person, but oh well! You get the idea!

For breaking the audio into bands, I actually used a pre-built object called [vz.audiosplittr], which outputs 4 bands of audio as a 0-1 value, which is then scaled into a 255 range and siphoned into RBG channels based on the light’s position.

If the bands are  1-4 with 1 being the lowest frequencies and 4 being the highest, and they are mapped to light patterns A,B,C, and D:

A: Blue from 1, green from 2

B: Green from 2

C: Green from 3, red from 4

D: Red from 4

In the studio space, these light configurations are then arranged into a pattern:

A B A A B A

B C D D C B

A C D D C A

B C D D C B

A B A A B A

Here’s a pretty ugly diagram I sketched while planning it out that gives some insight:

mapping diagram

So, the way that FFT comes into this whole mess is by acting as a filtering mechanism that allows for me to control how much of the audio signal comes through (implemented as a noise filter) and a [vectral~] smoothing object which allows me to control if the notes can appear quickly and sharp (more suited for percussive sounds) or is more smooth and gentle (more suited for singing and orchestral sounds).

And here’s the (master) patch:

<pre><code> ———-begin_max5_patcher———- 3703.3oc6c80aiiaD+4jOEB9oVfrBb3+Ye5ZKPaQQuG5iE2cHPwVwQ2IK4JK uY26vsneV5Gs9IoCIsjkSjcjhrr0BbIX8pPYIwe+3vYFNbH0ub6MydH+Swal E7GB9tfat4Wt8labEYK3lc+8MyVE8o4oQabesYyyWsJNqb1c9yUF+oRW4hfM wwq1DrLOeQ0ISV3NU9C+3GzUkso7yowthqJIa6pjrz3R28G1WX91xpRI6Jcc T47mRxVdeQ77ReslIHgRoTyuKPSBEDBXz2E.Xoj6Bn3mA+f8Z+0au09wccDk aViOfh7MyyWG+kVfirpLekr7yqi8UmYyB9gihz0EwaPtKpLIOqADDDcH2XzJ rhSAZHiw3LwcANH3PPaLEsUlBNNSQ0zPIA+QhOF09GiQZeNx2KUsJdylnkwu RfXSY95VXNi4cQcCC5bUHGbxHFcHfxHLjCXLmHB8ri6nhx1.t9J.bTZRSHLi 3PjyGDxyheFAzq.dzh4s0UwnNJt2jrLKJc1c0G0UdncsDzSvCXaMxCbD7.yD BF7GERDpQQD.6lucUbaZAUWAY.JQYAOAPg.p1ohjcWf.FEnuNZ6lVQt7ZH8K LNjanMQNef862lVlrIMYQbQK3jyONNuqIVWGUDsJtLt393rnG7vtxL2l8WWU QyyyJWDUF0Dw6oqmWQwlWhfRhls+dfTGVy8Ocu4Pg3XVSpumI+r6VBTRe6iQ QQJa+JBZFSBPnB4aIXYZhqUvdLGUBgVqUz2E0eLeOf.Z.D3976ynAr.N9KKf 98YP8e75yTeMU2uzjr344ayb2TQKssrwxIFzNbHvXBN1EkKP6wHGgGJM1VME +cJodL5h2lbKLZNngJYw1bEWaa9MgbFyYDBLCxCsiANVafiLVfiBRqqaFJ+h .NZKfiMZtVCneoNWqUWDvAsAN0XANqPohPOuP6HdFsN5mBH9eaCihNXZzdul mmlWToN2HnFNXGefPxUVe5wJsQi95gnngV92f2380lJSnas6rhLF9T9FLG+8 vbblA61Z4KE2Pn1CnB+QiIwQQ8fsop3pPbr2Cww.kzpK.Gvsnh4L1hfwk4.F s1A1qNyAuGli.H04FQOyHI1w4iBe65.e1XtGVdvyDLJkS+.n0Dt6QhNIpExC ejsFn.uZe5kftW8oeLHMYSY3eOOIKf0JmS5nO0uA8w5sKsbpkIjV2xD9ALwn rPw4mERVsNLpnLKtLz5oeQdZZbQv2DssLG8Q8a1lkLOZSYiCuOYMZeNDshY0 GqEs5CK60bIX5MW1xfKF1fwavpRFpBgwrggB7wgRvNytUjlr7oxfMyiPpYYv uCGCTPxlfr7hUQo+9VoMZKhfzQy0efasmZX1QJYDVlgCXOOiWb68xFOlliUg V5LQOs.vCQYK63fTeEQ7nkScvRdljS7CnTZrDgwRSNpQLN58KhWGmsHvMz91 HtyPDLfd6sk1IcXibIXz1P1hbvcAZ1HZ4qMrytBQuoI1ktHVNzF9sqdn0f1P oiVehA1CfyBk6hK.vf5YIXzHBXhRDMkENi7P68C1DmFPUsPO.b7Ab33l6Fb+ gtECaaHhP+gI133NJwx+mh+bq3+35ARrlda6+5JeztyY7tESegaLoJlSjXD7 OKMOZgMj2spcDaGtBlFbNKra57PpvFUUkYvlFNlWTY4IahCJepHdySOkmtnq NNIGuI9knBon0PNBZteleI3fS0zA42zwlWibz2f1hr30X1LAPGdvb4Lvow5n 9JJHe03qXydCJccd.LPCDuUZ.HnWiIylPqM.Bxy0z3WlubYZa98JNsN+wycf SPAZsy9mzlvDxpdATukP9Y1YfGWmF84uD7Mo44qCZKF0htLA2G1W4b6ZPC9P Qp3C.ZnVn5AG8w3E2i0Z7RuOprrH4gsk9D.5lZdAYpnMIyK2lkXqznQX9tFR a+1zz7mWll+PTZY7p04MZl20qNqbddgstkjmcvYWkuvCZ2seVUw4EIKSPZJM NaY4S65Ny0ZoA6QaXJT1dVYx7eZSM+s+ZpqBfMl8UmccBxPGoR7u2FklT94V pGkInx+xhX7Z2ECMubjWPZjSKFw6K6PdLOqrdJagPgQ.ZU+0xXuMYXuW289O VjXkY6PxzP4fyuCC2FXLmMIXLxllmSxVj+barl4qFVix7rlMUD.Ss6ZJm6Ju aZ6HJsVD0Zp3HOw7fNPNg7d3jJMTZm6qZhMNOxAwGoIeLNbYTRVM7+XTQc84 0msI4.cPMt8en6RQtQ2XCa8os+UmUEOk+bUsfbJKfyeJJKKN8DVEO0.hPuAb ARkT2qj6hhn50l.p08eBq.eLJcab9iUEWUdSnhdNt73z6AeUjCJJ6328EY+x AmaERa1y8A0dM9GddeNuvZ+zIYIknT4qajZ6a440OXCBYssmleMzBYYcWIda fdcb7hzjUNvDR7eAu8j2mYkiE5tGer7KAtPcak0t292A.gxCZKkAjz2RTuVZ w1e9wn4uo278T4QiYpB7Y4p1fdruaVr8GAGlqRCUALnLgbTKicJ+sosArqKB vGlJmiMh4+2+4+F3rdEDscQRdXasCryf9X37oOtgMJ6rwTaiRXIHapQbVIn+ VRve4e103HvGs4eg5FBkvkIH.qd1NYB2bNS3CHXBGC4+i7m6AzGsrNCQqMlp 1ThDz1og6rA7iFQAP8USDENHQWZvOCLjBGmZDe8DrkFY5IGGvMeroF9WMTi0 Zh3BwJruZXEIwqogdVYliEwl4QowneDnCD3P3oBQqgrWL7H2IGRtywvA8Pso AAp90Xtd7.bE3gl5OlJ7.4JvC6TVLMn.o7Jv.MREnQiEZFAfO9ygNuw2rNMA G26qHpib9lNhdZOXp+2vxouSNsmtHd6VTKLbbLX+HlvlzunOJsQZtJhyIyWr NOc2aa4Gxjax2VLuBRUiVLX+PwVDuoLIKpJvpeW8Bhrw24ojEKhaF20YKR1X M633QRqMocs5XW.guY0wtnytT0G8zp9nUcn9Htf0G4zp9H6R8w5a0IqOqRVr NOIqbWeJA0stlbqeGfGx3Fsf6V.OxJ+dpKd+i97gotzEkq5Gl.MNnmp.lfVr Ubixkvxb49UUWc4iApftn3gb4jb5b8AtH0Gg4bvOunUmQCM6lcG09vxCTmmJ 6KZDZtE5Q.NB4UCNcQO7K539lvwnbytqchdsy34tM9fl8TqK9pAI3h0grS0G w.nXxtffZyMaMNtU6InGubtOq7bQRzMBGWNZTU5XzfvlV1VEjQPlmQD1ct.e htA90lhP7Bo95xGAVlalVrLuScCk8zZeCq5LIpCgQM1YgogmM6KdLHYKnXuk aY1v1zGTQ4hVQESpb8fcQhYzgE8MgEzSXAzVgEU5xMZefUFcXAuIr5owZ6Tz 0Fr.gaJ5FUDwDcnSkcknEn6gpqFhYBppdoNwj9NUPihupXxLbLwk9P4LYvDv GNnLlIVCEHFLnnDyDqkhRFNnjd6TB4jATvvAkxGdzQGT7tBJUeL85hMoa8t2 rKEUbYj95Ll.xvAkPcYzSzcPwFNnz5oVKkbvfxtYDMwZoLCGTBXh0RQoCGTZ 1kQiNqysT8YzTfaRZraYEMvjrw9Ivj.R7ACIC+xzepyPRNXHA9kS3DBSvvE8 .uKFSIPoGLnrK.goUKEkMbPYXWFu95NnDCFTLfO0.0vE+Xb4kwDEzUP0mARo qVQ8MPTin8MM.Dcf.RwtLJH5LfXCDP90JyDBPhABHfvmXHBFpPGnzSLoNPMP HQYjIVqDkOPHwH7Il1apbnPhJlZPZnBd3GWFGG5NjLCERB4kARcY1X472clN IznNAkfX2ANZNyS6K+ZAJvbwlLVpoqSFaOzWw86wQ9c9LEDp.oP3VR+6m3n8 kOBrbmPke1XOCvxVd8rwNAfEbdfkUab8rwNAfE47.K2949XiHYWSjj9LKK9A V6RFLzclpMSOlfGpAolwNQ4DQ8BFkAh84EYc4iAIzkwxRubYdMsKYYpqReYx +QJz05ykgeftjWNrdlAKMmZPtDGpjlg5cu6HkOBRgcCU7yCpZNW.iKpDcEU8 PASSmf3HBsqyMGpjLGpr6M66KeLPUmlfFVOmKCe12zDP1Mc3p3gMA.DLX.ID U9oOtvg0U3ziPPzbQFz.RJ5kARcpIRzy0SAkZkuX1cadc81bmRGJoBWl41Zg ncYWg1EPVij3spzQA7coA8kTznZChzEEafZ.pqsaZOF+5ao8xGChlzoLclbA 44t37Az2zUsoAjFqin1KeT34NM75dZsuRgaCD8phdSv3WGiQqW+w3hM6pONb LaUzO52LYb6OJ3COy+mtZyrh3OlT88cuTmlEUL+ojx34kaK7KLyOs6sSlaGp qHaahaUqdqkAuc2B37Eqcx5ET5pO6WemtJORWOFsMs7PRt9sAw8IY15dbi2H W6+n4tcyCKeLIMsdOxo4dxT0xMc1xhnEI62bQNXK0gDRq2McX1WJLb+QXQG9 BmX2UAUWlV.1kGCd.mR49iXDBm11UQar+8bvG6+dQYK8q8Upp41yWQ957h5c luPzsnpu+1x7ZfU096aFd4lYCJJ9s4YQyym0f1d81Jj6E8Gu5HSE7uc+s0t0 HfOtWtLc8um2ppDM6KU216Wlw+ozswe.Nk.Pz74wY87Uox4rBVj+bVuqg6qW Bk80iiSBZjpg+4OG0+JHgZDb+qwGEiQcjolBfaqu7LWA+qEwwuiZni8X1ebu GVjZoaspblqbeazR6KU1dW8zbhaw1iUTo2UIjJkFv9xB8bWG+Ww1sMz9WEQO 6bMrJMncuLaHBie2vug5xlaUVtW4o3WhPzmI.7r0VQvp7r7MqsaDZ8DAcRi5 r3z3Uu7RUZhAbptzDBEz96By6Taiq8qF6KmVkba1VP.CLEA78sURlmN.slZF WSMG9pTRiOP2KPIsF1AVANhB30xgc07DBdDCblWwuVHT9inTfdN698pWdO+l j6uI4N8jbwq4Wu8+CnvvPGC ———–end_max5_patcher———– </code></pre>

 

And here’s the stuff inside the [pfft~]

<pre><code> ———-begin_max5_patcher———- 968.3ocyXErjiZCD8L9qfhiobbII.ArGxgjC4T9.RsUpojwxi0VXIGgvyLYq Yp7sjOs7kDoVl3wNrqwdAh8ACpQH8dutUqV74YAQKUOyqiB+P3GCCB97rf.v jyPvg1AQaYOWVwpgtEI4OoV9on49GY3Oa.yBYHt0nXEXx1suOo0lpwTwMlW1 w8SVTT3uc3Q0lWp.qQscV1rUHscGlQ7Qi9A4Dq6XlxMB4iOn4kF+Pio4KPyC wIEKRmGFibMHjEniSHaOe0CV3YekGXFiVrrw3Ugf+k0AQtm7PoZ6VtzywH3A uNaV6+uNa92lps2h.Mq5sNTN7WT4pEOJYU8V+huV8iDm5krD2kz3i52vQ7uq KJGSuAN6mferpgeTxNg+jqN9A64eVBD+Lg7O6tf+YiO8sYKHcI.4+OjtfjAY HvoP5BRwXv2cpJipjo6zqWbIu97K6++UdUk5oqJBfboHfXRtSQRGEE4GdKDs HsqcLP2GIARfre3bXUPxnrJvFPXT1PithJRv2oQE3D7.DUzts54RhYilWuYi pZU3dl0cFtVq1FtioscNDvzh12oRH4kpF+dyIcnfwQeKYLPWL1HGRXjAgFTz .KD+8e9WVty+8FtrTvqCWxsdxvRsptVsmq6VEH+WUfLVhPZli2IHp6RATwka uhAWD7w3gB4htxcNVri52L.HGE71Dzvt3e8ZiEJu0YUy39xKxs40hyIfWKcL xpYIlP1MuHn9mTa9UWna2N43uRBMDjam5SqQ5TLfIGVkc1ojfwyY+TEpV0nK aIUah7vim8XEu1JOLiPIeemPmzoMhUq3x26JWIpYKq3fTh5zWMn3wUI5ThG7 kvCc5vCpG5iCyjoAN8M5AOIvwUr5kUm3IyaA3A2G7LQ5SdOidlH4IqOK1KlN 7P6KdlF2EoOK1SlN+EA0iv4yxXN53gb2DN2a3LMpSu2I8NBNzaDN95fX61YO 7Q8gwDPhslvOoztlYyglBouILhQZ9dQa+SAKLssNLisHrFsuXtmy8e2unspU bsrQ.EyMyoAyNTz2Y0dIYa+Rm62x60rlJyoZEqrzd9hRUkGZeLDsHFmQSxrJ 1BZZRAh3tqvYBaEniEAN+fKvc.zyq+LZqchDsJ06cYmCPs5I4Uivi3JMiXu2 cW7Hgve5E10CPDoHMg5fUVVbLADybBFiiGd.9yZN+FPHndwtet6vzbpClCM3 9E1i1Wmc0vK2d7YJfLDEYAGHkzBbQ5viwS+VP8GhjTL3Xyxw4X.poVudK.Oj 0XsxhLwebHaDl35DBkeKDv9NuN6e.ja2W7K ———–end_max5_patcher———– </code></pre>

 

And as a final bonus, here’s the bridge project I mentioned at the beginning of the post (if anyone cares) (skip to 4 minutes for cool stuff):

Convolution – Project 3 – Kaleb Crawford

For this project, I deviated a bit from the project guidelines and played with more than one signal through my four different IRs.

For the “realistic” portion of the assignment, I decided to made some more subtle variations on the same IR recording, essentially recording my IR signal (which was in the upstairs bathroom of my house) from three different positions, and then applying it to the same signal three times. I put it in a short skit for some context and fun.

Original Signal + IR + Transformed Signals:

3 different IRs used to create a skit (It’s a bit quiet so turn up the audio):

For the “creative” part of the project, I messed with a variety of different inputs/outputs for the IR system. The two outputs I created were more along the lines of sound effects/voice processing.

The first used an IR signal that I found online taken in a large old Cathedral, and reversed the signal in audacity. The result made a really interesting effect where you could hear the echo of the audio before you actually here the audio, making a really ghostly otherworldly sound.

The second of the two used a sine wave sweep as the signal input (which is normally used for recording IRs) and a sound effect from an anime movie as the IR. More speficially, the first track “Ramiel” is the sound of a giant robot/monster thing from the Neon Genesis Evangelion reboot movies, and the signal being processed is a logarithmic sine sweep over 20 seconds. Together, they make a really nice ascending sound that reminded me of a large spacecraft engine starting up and then flying away.

Assignment 2 – Timeshifting – Kaleb Crawford

For this assignment, I took inspiration from a quote I heard in a movie over the weekend. In “Her” (Spike Jonze 2013), Samantha the artificial intelligence is trying to explain to her human lover why she can’t be with him anymore. She says

It’s like I’m reading a book… and it’s a book I deeply love. But I’m reading it slowly now. So the words are really far apart and the spaces between the words are almost infinite. I can still feel you… and the words of our story… but it’s in this endless space between the words that I’m finding myself now. It’s a place that’s not of the physical world. It’s where everything else is that I didn’t even know existed.

I was struck by the concept of the spaces between words and moments growing increasingly large, expanding to what seems almost infinite, and the sort of sense of being in endless space, but finding “everything else” in between these spaces.

So, I created a system based around stretching out multiple moments of sound to increasingly large and distorted timeframes and then back, allowing us to hear everything that happens between each of these cycles. Additionally, I layered three copies of each sound each expanding and contracting at a rate 2 times as slow as the previous, creating interesting interactions between the frequencies of distortions.

Here’s a screenshot of the patch, which I’ll explain a bit more after this:

Screen Shot 2015-09-21 at 11.54.53 AM

In this patch, you load content into a buffer, which is accessed by three [groove~] objects that play back the clip at a variable speed. The variable playback speed is controlled by a metro object which bangs three palindrome (0->max->0) [counter] objects. The output of the [counter] objects are reverse scaled to a range of (1-0), and then fed into [groove~] as a signal for playback speed.

However, each of the counters has a max that is double the previous, meaning it will take twice as long for the track to cycle from normal playback speed. These then move at a rate of (500/1000/2000) steps, times the increment rate, which is entered in ms.

This creates the effect of each track fluctuating in speed at it’s own (incredibly slow) “frequency”, which creates different interesting audio textures. This is better illustrated visually, so I’ve included a gif to explain the cycles of playback speeds.

The colors of the circles correspond to the colors of each track in the max patch:

Timeshift animation

 

As you can see, because they are moving at multiples of each other, they go in and out of phase, eventually realigning, and beginning the cycle over again.

I tried this effect with a variety of audio tracks; some produced interesting results, others produced terrifying satanic soundscapes. I’ve attached results using 4 different tracks for a variety of effects.

Comments on each track:

Dukduk – This is probably my favorite one, and the least ear-bleeding of the group. The tonal changes produce an interesting and complex soundscape that sounds like multiple instruments. Audio is a default max clip.

Fairy Fountain – This is the audio track I used for assignment 1, also produces some interesting atmospheric results that get a bit noisy at points, but not quite terrifying. Gets especially interesting at about 3:20ish.

Is That You – (WARNING IT STARTS REALLY LOUD) This was a default audio clip in MAX, I was surprised how complex the sound becomes using such a simple and repetitive clip. The transition from speech to sounds is interesting.

Lonliness #3 (Late Night Talking) – This track is from the Her OST (which is great btw, listen to it) and is already a very slow and atmospheric track, which becomes something more somber and ambient with the time-shifting. Very meditative.

Rains of Castamere – This is from Game of Thrones season 4(?) and is a truly beautiful track, that turns into an otherworldly and frightening demon-summoning ritual that’s chilling to listen to.

Hope you found this interesting!

Here’s the patch:


----------begin_max5_patcher----------
3430.3oc6cs0jaZjF84w+J5ROrk8Vikouwk7PpMwwa1GVmsJau6KYR4pknkD
1HPKf7Xuoh+su8MPnwBDRhFMphRUNZ.w.84zeWNeeMv76O4lQSR+LOeD36.+
J3la98mbyMpcI2wMlsuYzR1mmFyxUG1nooKWxSJFcq96J3etPs+28u.u4Uu8
UuC7BvK+G+vu7yu56tK4tD3XvKi4rL.acXTJXxW.Siil9wnj4f6FMU9M2MBv
RBEakG8+3.m6FI+0PiA+TTNaRLGTjNet5CPdQ5Jvzz0IEhec4QgGCdCOmWn2
IOKWdTNfmljlsjECVEy9xD1zO9L4wRFC9Q97njp8BtOpXg4rOtDMwQIb0ISB
IH1r27huDyUfr73RVuLccQLuPwINl8thULcgXr89L9zBMm544M14V.wCK+.R
CTe3CG6.9MyuUTn5TmN4CO2Kn1EHJo77Ck66OdxSj+uaO8oo+8aqla9morPy
Tif5lrd1LdllXtaza3rvpYi2JX4PddTFODDkLMiKO4f7Ub01fk4.yDxaKXYE
lSobdkE9g04Ef4LwQItDYbVdZhZhMl+Id74bpYL8V.ROgP1y7Bw5yK+mz30K
4BK4jhrzXvewPgoIuHc1rcxAnSmBHN9RbSQpOfNJiTLd2jfqu0IgeIM44QRO
Y1zhnOw2XPHt9hActk4AhuSW3AO66jlIAMV3S8z2FmdOW3.8Voq1yrEAfnJj
S8LFBNsR.jAh.PB7+5nvPQvhgA9Z+f.TqnmNPnGBd5emkWHl7sMtM186A2tV
G2+Dex54ykZClwYEqy34fYoYRECqrlquN+rwvOvqUF.acF3G0YfegI5uIafs
AemL6crN3eMqtFfgA6cxzmZeYYOPSkHvmRUk877cUJdb6RBOn8i3kojwWN2e
Wxpz7nhnTkjQGg3xmtfsZEOIW3WTjtjUDMkEG+Ef5.jpD2MOQ6AqDhTkH1U6
gnnIwt1sUR+oOZIOOmMm+MzTkO39PDrYDgoiQRHQUPRn+UpBF0.jph4qO2Ee
YEWeVFMp532Bsni.shSvDdVWgFpEiZnZ1RaTqSs0HxPMiraAilvRluAgqXYr
kbgrz2yUktT2lw1oBVjFGJpqcA2jRPlPTt07rzTgBYiv3wfWqMYxAqyEkjIb
ahEk18h0IpOltfahnJtR4fzYlR81cwUjdvsQLSHcUzU855VFqYmSEPqGdIWV
T5KzMPHNMcUtH9pjHCKEbbKPD.JoHRFUY7tClzGUbhTNahTNzRsFDucSJD6m
xIWDCUapjjV.lHpy.HfgL+C6i7r7aklYIBkXpCIjMcrsxEQCTtsU8Ho0hOH1
u5qWV1MoMIkmkktD3.d92CDmAvSkM1PwNp1KILdXSWHRFwAELUqsPeFvxEVZ
hejocdyELVR3XY6Nd2hHwoNWeB1LILQ3gCfO+6c.53geygNS0pEwQVll7Vwf
Qc4pzLkqa9Rgr1AcSvdlpIL4xI2vz6SLMHaESFk3Y5y67TfNo6cI+rNnRjIJ
hXrydXM3heGw4Oe8pUoYhPIEQhbUEYb8j5t6USujFFo6SCQ2mF0GHYU66zFg
Z8Lw5lU1Coi8HNl7vxnAn1xYQvCQ13FyGoZQWY6WEknTZXLpGTi5nmPI0B.f
ZHcAw9EhnZpb9ltJ+zMNXp1Pn7htEb+hHgauvY4A8a1VoOHhjpXeWGhWkvcp
aaIQv1WQpJhiLkZO3JffpzitpziTu1bEvzgvUnYP2K3EaTfWU6YK3ENHBw42
KtXeCbM9A.jH0AxwoyQ8HMCcWnIBtqt9SXafG0bbuHo2qVxt7exM2McP6O5P
kxVQDB9vYL.NtGrEJIDhgPnsRHjC0Zv8Hf+j0EEoI8G1fZGaTUn9cBslcreP
MYYJE6LYWBpGirriFMcsN4HgyDx5Vu7PqVclLEgZL5tei.O2ZEvVWG7LQEbR
kG5k.aryN3upJ1kGahnrU0W8CYhRadrTwaS9UQy+Z+YsggJRDSOFRz6HHQwv
OQ708mgVCzjtv+uppu+8KWmGME72jIfAvdnCJz.kNTruphLSg6MFFxeejws6
gVpDEw9DO785BLdOqnHKRD7QeaIbSE6H3Kl.sEqSjUZHyuPLycx4oXQINyiS
mvhK3KWkVyf037kTLMMShTQ.is9VI4wSB0ibkO2nk4UCX82qj4z3QrLMTy2p
A3nxcmlEIjLyhi4IyKVn+sg9AXYbPOenrKbiJhl9w5mpxemJP.EYDHN9PBp7
PVsfkyqOVd34XUjXdsAv9eWyhiJ9xNFs0pjybxA+l5qTlsOp5foObLDWWGb6
cwDgdjHdh1KZmPN3wtF3aDPEPZsWmOBkOQ6U0SaQIZIT5.YMQI9Cg.JKpTXK
.eBxEBtXUKT2uB1OEkPzRF5XQImGmpdSTdcKnNoL2CdZJy2bqkXIg4MXnHLL
yRAXuCNyizkXFaJeOckApWUPeU+Jzqp5A5D5gNBuvs4bak8RGrF1u05V5m0o
ZcozKpZcMXqa05dhdTDrocwWh05VZDbBIun3K1rW+0uJ7lv39vfySYDXrEHs
p5g.OtpWQO5Jx2X8bJE4iw+YsHehVYS2JxGStVj+0h7Orh7UOWG8Qq77C1r1
n3VWPHTv4bAgx3rv9.uDXM719R.3bNwqzWpGvKMvYyyfQ6yuP2yXObz2rT0i
F2KsZUAde0TND15J+CadEvDRzXEeqnFKtfu8xZe5JLukqxKgt+E+DhNuK1qH
qv8QIgo22Kl7pjtTsvEuV6aGz4LZyGxl90d3N6PNAqtkLI62Ge22YWGCljOs
YesO7Q0idhesQOzog61B2NHTZqlAcAuHa06dzoHBGR9ypHbnu+FFrSJwgWEh
evBwCbbDYVccBvdcVHd.Dg77tnDhqeHH5A+Zn94c.U61wqotWA8asC3CSTtU
rDdUfB48dmvmcs15B1aO71tH8MlLAq3lFB+62vSEoYmkVskWNgZM8vB44TEY
bx7oowoYklaDb.B5dq3m7HANH4Ofn5ep9Cp7prT4Miaow2XbviOlTEey7301
NO54ekG2mEI0uSVjNWYx8xjk2X4ZlrganbezUlbuuhKB7qwjR0f6jIw8NSF3
534SjDnOxiPgxeBRc8cwWngIwA0IxFdNX775chTTSNJPQjXGXfqhH8ufy2DD
zAWaO2qt1sSiTZG7q8nW8qa4NVyEU6AsW2kWRCuqYnjqN16kIMO196gI6e8O
hJ0wPESBEFhHO4OQwdHJ8hiIQ5G5eya9h1YRR+qIWXPBg9JaRQzRplIuHMIK
Ixt3bS5+rMNUDIoLJoq7+7tTIxN4aS5+nj9UQIgxz0JFEI22EGQREYoKuAoM
2eHHn+XQly.pL4oaSjZ+WliWUBGhJ2sJ0iLx4kW.SXsa6brq1mOvUoX2ogdj
gC5ewkFe6MZJE96RgRWdphPAi8n0y.Qa1eGagxcnNA90CWJ+IoRyKVhD0Ehz
8pP88xjaRA0FSdsoPsDrTsvoHppnQH0W8QPSOm5NWctalIco5lmqsH0u6Xba
XMYBtZR1rpH+ZDI1QujqvF5mAz6ZXx89XhZd8S.w56gofld+wA6+5vcIdNt5
hdbn9ZOci.yKsNZDn65a23RhEpeTJQuV42BOcc8OWb5y8N.iR7ix5GUGk5EG
yCdmrqvqb+aSu4oqylVtr6lGnOvlqUHOuHJgUdw90M2zM0NnEQgg7522BiB0
u50UjkyNmm65vwuCCmfAazHePq16vQ9bt053YYT3pznjh7xtVfzqZCQIcDAw
UUIp22lq2vBD4qRiiAHTkDC4M8P4VmMD.OEDPPTqh.XGP.cvrsc6ho8gQmT8
J+P0uoBqukEnytN9gG832CaywOsK..SNrY.hNlBgneuTKjth91MwdA0JMPs0
4BeH+SAeDnWc7UtoAetN9mc7AOE3gDwi1wlF3AC72zcQagQZWBYgGrXVO3R0
fOy.Nd5j9.zgEEBouMJMuxJopLT9D6L+1ggu+fwljtL6BwGlKkGQ8pdw07TE
nZSmbCKvljtjf28.iH3qaon9kusIAkZKK..L0BojzkUgI5WYulbNxsNW.3Py
4TB.r1BRmTQt04B.vic7qVCs5oMT6yFvfzAXPNzjiPiJc857ZbLPP63Jfsg5
LcAFXJrt9KpkP.zFHvSa8ipC.B57AfCV.Yc.T4LeFA.7DF+a6KaGPfBrPRY2
.+gJoLx2BghLFNCSnHjmE7CLcqwDJpzQvRghPcpTPuASnIpSxDFtxHPcIcIx
c3FOcI4GZ3ZJLB0wNmgO.UQANadclEn0FI+abT46Kc89rgy.pqFemHZb8okK
nwYDHmNNHlkowZ3.1QbLPF6N1HgqoG8CQB2t3qNbs4F520Vzb.zo4umHt59x
oWDAW6zl3NM9otG03WV+mT+htqipsNWH3PKDoBAzsZqfcLo6DBNTEXaifpRQ
NiH.dj.PeiwrUsH1o8NPWaDZbSzPaGZDR5+Yg5KerQM+VSEVRROD0+KenKwr
7azsV9Ppc.fiE.f9kVibHS2B.VwXxB00V2x4XJtUe2nvVs5S7rbyPQAfQKYe
PeiundOYHttI5MUCjQY7OEUd7p+3eMhkMcQTAep7OpupaAmOa9iHs5NsIKYc
j4M.g3J+GO4+CLftTjC
-----------end_max5_patcher-----------

 

Assignment 1 – Found Systems – Kaleb Crawford

The found system I decided to investigate was auto-tuning. Specifically, the built in auto-tuning functionality in Garageband.

I began with a clip of a single audio file, specifically, the Orchestral performance of the “Fairy Fountain Theme” for the Legend of Zelda 25th anniversary soundtrack medley. (Original here )
Through the process of importing the most recent track, applying auto-tune (in the key of C Major) exporting to an MP3, then repeating, I transformed the track slowly, 150 times.

Screen Shot 2015-09-06 at 3.09.16 PM

While this process does inherently include artifacts from MP3 compression (with the saving of the file, over and over) I’d hoped the effects wouldn’t cause significant change with this number of iterations.

For the final track, I stitched together 30 seconds of the original song, for context, and then each of the 15 second auto-tuned variations, in sequence.